Entry and exit flows in curved pipes

2017 ◽  
Vol 815 ◽  
pp. 570-591 ◽  
Author(s):  
Jesse T. Ault ◽  
Bhargav Rallabandi ◽  
Orest Shardt ◽  
Kevin K. Chen ◽  
Howard A. Stone

Solutions are presented for both laminar developing flow in a curved pipe with a parabolic inlet velocity and laminar transitional flow downstream of a curved pipe into a straight outlet. Scalings and linearized analyses about appropriate base states are used to show that both cases obey the same governing equations and boundary conditions. In particular, the governing equations in the two cases are linearized about fully developed Poiseuille flow in cylindrical coordinates and about Dean’s velocity profile for curved pipe flow in toroidal coordinates respectively. Subsequently, we identify appropriate scalings of the axial coordinate and disturbance velocities that eliminate dependence on the Reynolds number $Re$ and dimensionless pipe curvature $\unicode[STIX]{x1D6FC}$ from the governing equations and boundary conditions in the limit of small $\unicode[STIX]{x1D6FC}$ and large $Re$. Direct numerical simulations confirm the scaling arguments and theoretical solutions for a range of $Re$ and $\unicode[STIX]{x1D6FC}$. Maximum values of the axial velocity, secondary velocity and pressure perturbations are determined along the curved pipe section. Results collapse when the scalings are applied, and the theoretical solutions are shown to be valid up to Dean numbers of $D=Re^{2}\unicode[STIX]{x1D6FC}=O(100)$. The developing flows are shown numerically and analytically to contain spatial oscillations. The numerically determined decay of the velocity perturbations is also used to determine entrance/development lengths for both flows, which are shown to scale linearly with the Reynolds number, but with a prefactor ${\sim}60\,\%$ larger than the textbook case of developing flow in a straight pipe.

1976 ◽  
Vol 73 (4) ◽  
pp. 735-752 ◽  
Author(s):  
S. Murata ◽  
Y. Miyake ◽  
T. Inaba

The steady laminar motion of fluid through pipes of circular cross-section, the curvature of whose centre-line varies locally, is analysed theoretically. The flow in three kinds of pipes whose centre-lines are specified by \[ \hat{y} = a(1+\kappa^2\hat{x}^2)^{\frac{1}{2}},\quad\hat{y} = a\tan h\kappa\hat{x}\quad{\rm and}\quad\hat{y} = a\sin\kappa\hat{x} \] are treated as the examples of once-, twice- and periodically-curved pipes, respectively. The analysis is valid for any other two-dimensionally curved pipes, when centre-line curvature is small. At very small Reynolds number, the position of maximum axial velocity shifts towards the inner side of the pipe section; at large Reynolds number, on the contrary, it tends to the outer side, owing to centrifugal force. Furthermore, in the latter case, adaptation of the flow follows the change of mean-flow direction, with a phase lag.


1980 ◽  
Vol 98 (2) ◽  
pp. 383-395 ◽  
Author(s):  
T. Mullin ◽  
C. A. Greated

The results of an experimental investigation of the entry, into a curved pipe, of the fully developed oscillatory laminar flow in a straight section are presented. Laser anemometry has been used to measure velocity profiles in the plane of the bend at various stations around a 180°-curved section. The flow development is found to depend upon both the frequency parameter of the flow and the amplitude of oscillation.Results are presented for two values of the frequency parameter α. The first is for small α where the flow can be considered quasi-steady and the flow development is found to proceed as in previous steady-flow studies. The other case, more extensively studied, is where α has a value such that both viscous and inertial effects play important roles in establishing the basic flow at different parts of the pressure cycle. The flow development process around the curve is found to be complicated, but a general trend is found and the results are explained in terms of those already established for steady-flow development in a curved pipe.


2013 ◽  
Vol 738 ◽  
pp. 463-491 ◽  
Author(s):  
J. Kühnen ◽  
M. Holzner ◽  
B. Hof ◽  
H. C. Kuhlmann

AbstractThe flow instability and further transition to turbulence in a toroidal pipe (torus) with curvature ratio (tube-to-coiling diameter) 0.049 is investigated experimentally. The flow inside the toroidal pipe is driven by a steel sphere fitted to the inner pipe diameter. The sphere is moved with constant azimuthal velocity from outside the torus by a moving magnet. The experiment is designed to investigate curved pipe flow by optical measurement techniques. Using stereoscopic particle image velocimetry, laser Doppler velocimetry and pressure drop measurements, the flow is measured for Reynolds numbers ranging from 1000 to 15 000. Time- and space-resolved velocity fields are obtained and analysed. The steady axisymmetric basic flow is strongly influenced by centrifugal effects. On an increase of the Reynolds number we find a sequence of bifurcations. For $\mathit{Re}= 4075\pm 2\hspace{0.167em} \% $ a supercritical bifurcation to an oscillatory flow is found in which waves travel in the streamwise direction with a phase velocity slightly faster than the mean flow. The oscillatory flow is superseded by a presumably quasi-periodic flow at a further increase of the Reynolds number before turbulence sets in. The results are found to be compatible, in general, with earlier experimental and numerical investigations on transition to turbulence in helical and curved pipes. However, important aspects of the bifurcation scenario differ considerably.


1984 ◽  
Vol 106 (1) ◽  
pp. 71-77 ◽  
Author(s):  
L. S. Yao

Thermally and hydrodynamically developing flow in heated horizontal curved pipes is analyzed. The perturbation solution is quantitatively valid only in a small region near the pipe inlet. The solution, however, provides information about the physical importance of centrifugal force and buoyancy on the developing flow. It also reveals the length and the velocity scales for the downstream regions where the secondary flow can not be treated as a small perturbation. The relative importance of centrifugal force and buoyancy is determined by the ratio of the Dean number and the Grashof number.


Summary .—Experiments are described in which coloured fluid is introduced through a small hole in the side of a glass helix through which water is running. The conclusion reached by Mr. C. M. White, as a result of resistance measurements, that a higher speed of flow is necessary to maintain turbulence in a curved pipe than in a straight one, is verified directly. In a pipe bent into a helix the diameter of which was 18 times that of the cross-section, steady stream-line motion persisted up to a Reynolds number, 5830, i. e ., 2·8 times Reynolds' criterion for a straight pipe. This occurred in spite of the fact that the flow was highly turbulent on entering the helix.


2021 ◽  
Vol 37 ◽  
pp. 346-358
Author(s):  
Fuchun Yang ◽  
Xiaofeng Jiang ◽  
Fuxin Du

Abstract Free vibrations of rotating cylindrical shells with distributed springs were studied. Based on the Flügge shell theory, the governing equations of rotating cylindrical shells with distributed springs were derived under typical boundary conditions. Multicomponent modal functions were used to satisfy the distributed springs around the circumference. The natural responses were analyzed using the Galerkin method. The effects of parameters, rotation speed, stiffness, and ratios of thickness/radius and length/radius, on natural response were also examined.


2006 ◽  
Vol 5-6 ◽  
pp. 407-414 ◽  
Author(s):  
Mohammad Mohammadi Aghdam ◽  
M.R.N. Farahani ◽  
M. Dashty ◽  
S.M. Rezaei Niya

Bending analysis of thick laminated rectangular plates with various boundary conditions is presented using Generalized Differential Quadrature (GDQ) method. Based on the Reissner first order shear deformation theory, the governing equations include a system of eight first order partial differential equations in terms of unknown displacements, forces and moments. Presence of all plate variables in the governing equations provide a simple procedure to satisfy different boundary condition during application of GDQ method to obtain accurate results with relatively small number of grid points even for plates with free edges .Illustrative examples including various combinations of clamped, simply supported and free boundary condition are given to demonstrate the accuracy and convergence of the presented GDQ technique. Results are compared with other analytical and finite element predictions and show reasonably good agreement.


Author(s):  
Irfan Anjum Badruddin

Purpose The purpose of this paper is to investigate the heat transfer in an arbitrary cavity filled with porous medium. The geometry of the cavity is such that an isothermal heating source is placed centrally at the bottom of the cavity. The height and width of the heating source is varied to analyses its effect on the heat transfer characteristics. The investigation is carried out for three different cases of outer boundary conditions such as two outside vertical walls being maintained at cold temperature To, two vertical and top horizontal surface being heated to. To and the third case with top surface kept at To but other surfaces being adiabatic. Design/methodology/approach Finite element method is used to solve the governing equations. Findings It is observed that the cavity exhibits unique heat transfer behavior as compared to regular cavity. The cases of boundary conditions are found to affect the heat transfer rate in the porous cavity. Originality/value This is original work representing the heat transfer in irregular porous cavity with various boundary conditions. This work is neither being published nor under review in any other journal.


Author(s):  
Syed Anjum Haider Rizvi ◽  
Joseph Mathew

At off-design conditions, when the blade Reynolds number is low, a significant part of the blade boundary layer can be transitional. Then, standard RANS models are unable to predict the flows correctly but explicit transition modeling provides some improvement. Since large eddy simulations (LES) are improvements on RANS, the performance of LES was examined by simulating a flow through a linear, compressor cascade for which experimental data are available — specifically at the Reynolds number of 210,000 based on blade chord when transition processes occur over a significant extent of the suction surface. The LES were performed with an explicit filtering approach, applying a low-pass filter to achieve sub-grid-scale modeling. Explicit 8th-order difference formulas were used to obtain high resolution spatial derivative terms. An O-grid was wrapped around the blade with suitable clustering for the boundary layer and regions of large changes along the blade. Turbulent in-flow was provided from a precursor simulation of homogeneous, isotropic turbulence. Two LES and a DNS were performed. The second LES refines the grid in the vicinity of the separation bubble on the suction surface, and along the span. Surface pressure distributions from all simulations agree closely with experiment, thus providing a much better prediction than even transition-sensitive RANS computations. Wall normal profiles of axial velocity and fluctuations also agree closely with experiment. Differences between LES and DNS are small, but the refined grid LES is closer to the DNS almost everywhere. This monotonic convergence, expected of the LES method used, demonstrates its reliability. The pressure surface undergoes transition almost immediately downstream of the leading edge. On the suction surface there are streaks as expected for freestream-turbulence-induced transition, but spots do not appear. Instead, a separating shear layer rolls up and breaks down to turbulence at re-attachment. Both LES capture this process. Skin friction distribution reveals the transition near the re-attachment to occur over an extended region, and subsequent relaxation is slower in the LES. The narrower transition zone in the DNS is indicative of the essential role of smaller scales during transition that should not be neglected in LES. Simulation data also reveal that an assumption of laminar kinetic energy transition models that Reynolds shear stress remains small in the pre-transitional region is supported. The remaining differences in the predictions of such models is thus likely to be the separation-induced transition which preempts the spot formation.


Sign in / Sign up

Export Citation Format

Share Document