Equilibrium configurations of drops or bubbles in an eccentric annulus

2019 ◽  
Vol 863 ◽  
pp. 364-385
Author(s):  
Negar Beheshti Pour ◽  
David B. Thiessen

The purpose of this paper is to find the zero-gravity equilibrium configurations of liquid drops or bubbles that have sufficient volume to form large-aspect-ratio bridging segments or occluding slugs in the eccentric annulus between two cylinders. In zero gravity, the static problem depends on the contact angle of the fluid segment on the solid support, and two geometric parameters: the radius ratio and the dimensionless distance between the cylinder centres. For both non-wetting and wetting liquids, we find regions of geometric parameter space where only occluding configurations occur, a bistable region where either configuration can occur, and a region where only the non-occluding bridging configuration can occur. For the non-occluding cases, we applied a large-aspect-ratio free-energy minimization approach to predict the cross-sectional shape of the liquid, and a finite element method was used to compute the interface shape of the occluding cases. A Surface Evolver model was used to simulate the three-dimensional shape of both occluding and non-occluding configurations. The simulation results support the theoretical predictions well. The fractional open area of the conduit was determined for both highly wetting and highly non-wetting minority phases. Optimization of the geometric parameters for a given wetting condition could facilitate the segregation and transport of two fluid phases in applications involving large aspect ratios and small pressure driving forces.

Author(s):  
Alexandrina Untaroiu ◽  
Costin D. Untaroiu ◽  
Houston G. Wood ◽  
Paul E. Allaire

Traditional annular seal models are based on bulk flow theory. While these methods are computationally efficient and can predict dynamic properties fairly well for short seals, they lack accuracy in cases of seals with complex geometry or with large aspect ratios (above 1.0). In this paper, the linearized rotordynamic coefficients for a seal with large aspect ratio are calculated by means of a three dimensional CFD analysis performed to predict the fluid-induced forces acting on the rotor. For comparison, the dynamic coefficients were also calculated using two other codes: one developed on the bulk flow method and one based on finite difference method. These two sets of dynamic coefficients were compared with those obtained from CFD. Results show a reasonable correlation for the direct stiffness estimates, with largest value predicted by CFD. In terms of cross-coupled stiffness, which is known to be directly related to cross-coupled forces that contribute to rotor instability, the CFD predicts also the highest value; however a much larger discrepancy can be observed for this term (73% higher than value predicted by finite difference method and 79% higher than bulk flow code prediction). Similar large differences in predictions one can see in the estimates for damping and direct mass coefficients, where highest values are predicted by the bulk flow method. These large variations in damping and mass coefficients, and most importantly the large difference in the cross-coupled stiffness predictions, may be attributed to the large difference in seal geometry (i.e. the large aspect ratio AR>1.0 of this seal model vs. the short seal configuration the bulk flow code is usually calibrated for, using an empirical friction factor).


Author(s):  
F Afonso ◽  
G Leal ◽  
J Vale ◽  
É Oliveira ◽  
F Lau ◽  
...  

The increase in wing aspect ratio is gaining interest among aircraft designers in conventional and joined-wing configurations due to the higher lift-to-drag ratios and longer ranges. However, current transport aircraft have relatively small aspect ratios due their increased structural stiffness. The more flexible the wing is more prone to higher deflections under the same operating condition, which may result in a geometrical nonlinear behavior. This nonlinear effect can lead to the occurrence of aeroelastic instabilities such as flutter sooner than in an equivalent stiffer wing. In this work, the effect of important stiffness (inertia ratio and torsional stiffness) and geometric (sweep and dihedral angles) design parameters on aeroelastic performance of a rectangular high aspect ratio wing model is assessed. The torsional stiffness was observed to present a higher influence on the flutter speed than the inertia ratio. Here, the decrease of the inertia ratio and the increase of the torsional stiffness results in higher flutter and divergence speeds. With respect to the geometric parameters, it was observed that neither the sweep angle nor the dihedral angle variations caused a substantial influence on the flutter speed, which is mainly supported by the resulting smaller variations in torsion and bending stiffness due to the geometric changes.


Author(s):  
S. Zhang ◽  
S. H. Winoto ◽  
H. T. Low

A three-dimensional (3-D) parametric model of Tesla-type valves is proposed. A geometrical relationship is derived for optimization study, and based on the model, performance investigations in terms of diodicity and pressure-flow rate characteristics of the valve are numerically carried out with same hydraulic diameter and different aspect ratios (of the model cross-sectional dimensions) ranging from 0.5 to 4. The 3-D computational simulations show that, for the same hydraulic diameter, the unity aspect ratio gives higher diodicity at Reynolds number less than 500 and higher will be achieved with bigger aspect ratio when the Reynolds number is above 500. Investigations of pressure-flow rate characteristics of the Tesla valve show that Tesla valve with high aspect ratio gives more flow control ability.


Author(s):  
Sedem Kumahor ◽  
Mark F. Tachie

Abstract Turbulent flows around a square cylinder and a rectangular cylinder with a streamwise aspect ratio of 5 in a uniform flow were investigated using time-resolved particle image velocimetry. The Reynolds number based on the cylinder height and oncoming flow velocity was 16200. Similarities and differences in the flow dynamics over the cylinders and in the near wake region were examined in terms of the mean flow, Reynolds stresses and triple velocity correlations. The budget of turbulent kinetic energy as well as temporal and spectral analyses were also performed. The results show that the primary, secondary and wake vortexes are smaller for the square cylinder compared to the large aspect ratio cylinder. There are regions of elevated Reynolds stresses and triple velocity correlations along the mean separating streamlines, and the magnitudes of these statistics are an order of magnitude higher over the square cylinder compared to the large aspect ratio cylinder. The topology of the triple velocity correlations shows low-speed ejection and high-speed sweep events, respectively, transporting instantaneous Reynolds normal stresses away from the mean separating streamline into the free-stream and toward the cylinder surface, regardless of aspect ratio. Near the leading and trailing edges of both cylinders, regions of negative turbulence production are observed and the dominant components contributing to this occurrence are discussed. Temporal autocorrelation coefficients of the streamwise and vertical velocity fluctuations show a periodic trend, with a periodicity that is directly linked to the Kármán shedding frequency and its second harmonic.


Author(s):  
Alexandrina Untaroiu ◽  
Costin D. Untaroiu ◽  
Houston G. Wood ◽  
Paul E. Allaire

Traditional annular seal models are based on bulk flow theory. While these methods are computationally efficient and can predict dynamic properties fairly well for short seals, they lack accuracy in cases of seals with complex geometry or with large aspect ratios (above 1.0). In this paper, the linearized rotordynamic coefficients for a seal with a large aspect ratio are calculated by means of a three-dimensional CFD analysis performed to predict the fluid-induced forces acting on the rotor. For comparison, the dynamic coefficients were also calculated using two other codes: one developed on the bulk flow method and one based on finite difference method. These two sets of dynamic coefficients were compared with those obtained from CFD. Results show a reasonable correlation for the direct stiffness estimates, with largest value predicted by CFD. In terms of cross-coupled stiffness, which is known to be directly related to cross-coupled forces that contribute to rotor instability, the CFD also predicts the highest value; however, a much larger discrepancy can be observed for this term (73% higher than the value predicted by the finite difference method and 79% higher than the bulk flow code prediction). One can see similar large differences in predictions in the estimates for damping and direct mass coefficients, where the highest values are predicted by the bulk flow method. These large variations in damping and mass coefficients, and most importantly the large difference in the cross-coupled stiffness predictions, may be attributed to the large difference in seal geometry (i.e., the large aspect ratio AR > 1.0 of this seal model versus the short seal configuration the bulk flow code is usually calibrated for using an empirical friction factor).


Author(s):  
Alexandrina Untaroiu ◽  
Vahe Hayrapetian ◽  
Costin D. Untaroiu ◽  
Paul E. Allaire ◽  
Houston G. Wood ◽  
...  

The instability due to fluid flow in seals is a known phenomenon that can occur in pumps and compressors as well as in steam turbines. Traditional annular seal models are based on bulk flow theory. While these methods are computationally efficient and can predict dynamic properties fairly well for short seals, they lack accuracy in cases of seals with complex geometry or with large aspect ratios (above 1.0). Unlike the bulk flow models, computational fluid dynamics (CFD) makes no simplifying assumption on the seal geometry, shear stress at the wall, relationship between wall shear stress and mean fluid velocity, or characterization of interfaces between control volumes through empirical friction factors. This paper presents a method to calculate the linearized rotor-dynamic coefficients for a liquid seal with large aspect ratio (balance drum) subjected to incompressible turbulent flow by means of a three dimensional CFD analysis to calculate the fluid-induced forces acting on the rotor. The Reynolds-averaged Navier-Stokes equations for fluid flow are solved by dividing the volume of fluid into a discrete number of points at which unknown variables are computed. As a result, all the details of the flow field, including the fluid forces with potential destabilizing effects, are calculated. A 2nd order curve fit is then used to express the fluid-induced forces in terms of equivalent linearized stiffness, damping, and fluid inertia coefficients.


2005 ◽  
Vol 128 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Markus J. Buehler ◽  
Yong Kong ◽  
Huajian Gao ◽  
Yonggang Huang

Carbon nanotubes (CNTs) constitute a prominent example of nanomaterials. In most studies on mechanical properties, the effort was concentrated on CNTs with relatively small aspect ratio of length to diameters. In contrast, CNTs with aspect ratios of several hundred can be produced with today’s experimental techniques. We report atomistic-continuum studies of single-wall carbon nanotubes with very large aspect ratios subject to compressive loading. It was recently shown that these long tubes display significantly different mechanical behavior than tubes with smaller aspect ratios (Buehler, M. J., Kong, Y., and Guo, H., 2004, ASME J. Eng. Mater. Technol. 126, pp. 245–249). We distinguish three different classes of mechanical response to compressive loading. While the deformation mechanism is characterized by buckling of thin shells in nanotubes with small aspect ratios, it is replaced by a rodlike buckling mode above a critical aspect ratio, analogous to the Euler theory in continuum mechanics. For very large aspect ratios, a nanotube is found to behave like a wire that can be deformed in a very flexible manner to various shapes. In this paper, we focus on the properties of such wirelike CNTs. Using atomistic simulations carried out over a several-nanoseconds time span, we observe that wirelike CNTs behave similarly to flexible macromolecules. Our modeling reveals that they can form thermodynamically stable self-folded structures, where different parts of the CNTs attract each other through weak van der Waals (vdW) forces. This self-folded CNT represents a novel structure not described in the literature. There exists a critical length for self-folding of CNTs that depends on the elastic properties of the tube. We observe that CNTs fold below a critical temperature and unfold above another critical temperature. Surprisingly, we observe that self-folded CNTs with very large aspect ratios never unfold until they evaporate. The folding-unfolding transition can be explained by entropic driving forces that dominate over the elastic energy at elevated temperature. These mechanisms are reminiscent of the dynamics of biomolecules, such as proteins. The different stable states of CNTs are finally summarized in a schematic phase diagram of CNTs.


2015 ◽  
Vol 17 (36) ◽  
pp. 23532-23537 ◽  
Author(s):  
Jincheng Tong ◽  
Li Zhang ◽  
Fei Li ◽  
Mingming Li ◽  
Shaokui Cao

Rapid and high-yield production of g-C3N4 nanosheets with large aspect ratios by a moderate disintegration–exfoliation approach.


2018 ◽  
Vol 22 ◽  
pp. 01042
Author(s):  
Amr G. Eltorky ◽  
Mohamed Elhelw ◽  
Mohamed Fayed ◽  
Abdelhamid Attia

Heat transfer through the horizontal eccentric annulus between eccentric rectangular ducts with different eccentricities has been calculated with various aspect ratio of inner duct. Boundary conditions are used with constant hot temperature on inner duct and constant cold temperature on the outer duct. Space between two ducts included TiO2-water Nano-fluid with different solid Volume fraction (φ = 0, 2, 5, 10 %). The eccentricity was changed with different values (E = 0.025, 0.05, 0.075 m) in left direction and aspect ratio was changed with different value (AR= 0.25, 0.375, 0.5). Results show that with an increase of aspect ratios, the average Nusselt number increases. Alsowith an increase in eccentricity value,the average Nusselt numberremains constant, and then an increase begins to occur. And the average Nusselt number increase due to an increase in nanoparticle concentration.


Author(s):  
Kisaburo Azuma ◽  
Yinsheng Li ◽  
Kunio Hasegawa

Multiple flaws detected during in-service inspections are evaluated in accordance with the flaw combination rules provided in the ASME B&PV Code Section XI. The rules treat adjacent two flaws as a single combined flaw if the distance between the two flaws is equal to or less than half of the flaw depth. That is, the combination rules are consisted of flaw depth basis. However, its applicability has not been clarified systematically to the flaws with large aspect ratio, the depth of which are greater than half its length. Interactions of stress intensity factors for multiple flaws under membrane stress were investigated using finite element analyses. The numerical results suggest that the flaw combination rules might be better to use flaw length basis, instead of flaw depth, over a wide range of the aspect ratio.


Sign in / Sign up

Export Citation Format

Share Document