Self-similar kinematics among efficient slender swimmers

2018 ◽  
Vol 840 ◽  
pp. 106-130
Author(s):  
A. J. Wiens ◽  
A. E. Hosoi

We present an analysis of efficient undulatory propulsion for slender animals swimming at high Reynolds number. Using Lighthill’s large-amplitude elongated-body theory, we show that optimally efficient swimming kinematics can be characterized through a single dimensionless variable $\unicode[STIX]{x1D713}$. This variable, $\unicode[STIX]{x1D713}$, is defined by a simple function of a swimming animal’s body wave properties. Physically, $\unicode[STIX]{x1D713}$ characterizes how the velocity of an animal’s tail varies throughout its swimming stroke. Lighthill’s model predicts that swimming efficiency is near optimal in the range $0.3<\unicode[STIX]{x1D713}<1.0$ and peaks at $\unicode[STIX]{x1D713}=0.87$. At this point, the average magnitude of the tail velocity is minimized and swimming kinematics are tuned such that the thrust coefficient is as close to constant as possible throughout the swimming stroke. We use a compiled dataset of over 250 unique measurements to show that species across a wide range of size and shape fall within the optimal region.

2007 ◽  
Vol 579 ◽  
pp. 373-382 ◽  
Author(s):  
MARIUS UNGARISH

We consider the propagation of a gravity current of density ρc from a lock of length x0 and height h0 into an ambient fluid of density ρa in a channel of height H. When the Reynolds number is large, the resulting flow is governed by the parameters ρc/ρa and H* = H/h0. We show that the shallow-water one-layer model, combined with a Benjamin-type front condition, provides a versatile formulation for the thickness and speed of the current, without any adjustable constants. The results cover in a continuous manner the range of light ρc/ρa ≪ 1, Boussinesq ρc/ρa ≈ 1, and heavy ρc/ρa ≫ 1 currents in a fairly wide range of depth ratio. We obtain analytical solutions for the initial dam-break or slumping stage of propagation with constant speed, and derive explicitly the trends for small and large values of the governing parameters. This reveals the main features: (a) the heavy current propagates faster and its front is thinner than for the light counterpart; (b) the speed of the heavy current depends little on H*, while that of the light current increases with H*; and (c) in the shallow ambient case (H* close to 1) the light current is choked to move with the thickness of half-channel, while the heavy current typically moves with an unrestricted smaller thickness. These qualitative predictions are in accord with previous observations, and some quantitative comparisons with available experimental and numerical simulations data also show fair agreement. However, given the paucity of the available data, the main deficiency of the model is the unknown practical limit of applicability. For large time, t, a self-similar propagation with t2/3 is feasible for both the heavy and light currents, but the thickness profiles display differences.


Author(s):  
H. Zimmermann ◽  
R. Gumucio ◽  
K. Katheder ◽  
A. Jula

Performance and aerodynamic aspects of ultra-high bypass ratio ducted engines have been investigated with an emphasis on nozzle aerodynamics. The interference with aircraft aerodynamics could not be covered. Numerical methods were used for aerodynamic investigations of geometrically different aft end configurations for bypass ratios between 12 and 18, this is the optimum range for long missions which will be important for future civil engine applications. Results are presented for a wide range of operating conditions and effects on engine performance are discussed. The limitations for higher bypass ratios than 12 to 18 do not come from nozzle aerodynamics but from installation effects. It is shown that using CFD and performance calculations an improved aerodynamic design can be achieved. Based on existing correlations, for thrust and mass-flow, or using aerodynamic tailoring by CFD and including performance investigations, it is possible to increase the thrust coefficient up to 1%.


2014 ◽  
Vol 11 (S308) ◽  
pp. 542-545 ◽  
Author(s):  
S. Nadathur ◽  
S. Hotchkiss ◽  
J. M. Diego ◽  
I. T. Iliev ◽  
S. Gottlöber ◽  
...  

AbstractWe discuss the universality and self-similarity of void density profiles, for voids in realistic mock luminous red galaxy (LRG) catalogues from the Jubilee simulation, as well as in void catalogues constructed from the SDSS LRG and Main Galaxy samples. Voids are identified using a modified version of the ZOBOV watershed transform algorithm, with additional selection cuts. We find that voids in simulation areself-similar, meaning that their average rescaled profile does not depend on the void size, or – within the range of the simulated catalogue – on the redshift. Comparison of the profiles obtained from simulated and real voids shows an excellent match. The profiles of real voids also show auniversalbehaviour over a wide range of galaxy luminosities, number densities and redshifts. This points to a fundamental property of the voids found by the watershed algorithm, which can be exploited in future studies of voids.


2017 ◽  
Vol 284 (1846) ◽  
pp. 20162395 ◽  
Author(s):  
Kohei Koyama ◽  
Ken Yamamoto ◽  
Masayuki Ushio

Lognormal distributions and self-similarity are characteristics associated with a wide range of biological systems. The sequential breakage model has established a link between lognormal distributions and self-similarity and has been used to explain species abundance distributions. To date, however, there has been no similar evidence in studies of multicellular organismal forms. We tested the hypotheses that the distribution of the lengths of terminal stems of Japanese elm trees ( Ulmus davidiana ), the end products of a self-similar branching process, approaches a lognormal distribution. We measured the length of the stem segments of three elm branches and obtained the following results: (i) each occurrence of branching caused variations or errors in the lengths of the child stems relative to their parent stems; (ii) the branches showed statistical self-similarity; the observed error distributions were similar at all scales within each branch and (iii) the multiplicative effect of these errors generated variations of the lengths of terminal twigs that were well approximated by a lognormal distribution, although some statistically significant deviations from strict lognormality were observed for one branch. Our results provide the first empirical evidence that statistical self-similarity of an organismal form generates a lognormal distribution of organ sizes.


2018 ◽  
Vol 856 ◽  
pp. 958-983 ◽  
Author(s):  
Jinyul Hwang ◽  
Hyung Jin Sung

Wall turbulence is a ubiquitous phenomenon in nature and engineering applications, yet predicting such turbulence is difficult due to its complexity. High-Reynolds-number turbulence arises in most practical flows, and is particularly complicated because of its wide range of scales. Although the attached-eddy hypothesis postulated by Townsend can be used to predict turbulence intensities and serves as a unified theory for the asymptotic behaviours of turbulence, the presence of coherent structures that contribute to the logarithmic behaviours has not been observed in instantaneous flow fields. Here, we demonstrate the logarithmic region of the turbulence intensity by identifying wall-attached structures of the velocity fluctuations ($u_{i}$) through the direct numerical simulation of a moderate-Reynolds-number boundary layer ($Re_{\unicode[STIX]{x1D70F}}\approx 1000$). The wall-attached structures are self-similar with respect to their heights ($l_{y}$), and in particular the population density of the streamwise component ($u$) scales inversely with $l_{y}$, reminiscent of the hierarchy of attached eddies. The turbulence intensities contained within the wall-parallel components ($u$ and $w$) exhibit the logarithmic behaviour. The tall attached structures ($l_{y}^{+}>100$) of $u$ are composed of multiple uniform momentum zones (UMZs) with long streamwise extents, whereas those of the cross-stream components ($v$ and $w$) are relatively short with a comparable width, suggesting the presence of tall vortical structures associated with multiple UMZs. The magnitude of the near-wall peak observed in the streamwise turbulent intensity increases with increasing $l_{y}$, reflecting the nested hierarchies of the attached $u$ structures. These findings suggest that the identified structures are prime candidates for Townsend’s attached-eddy hypothesis and that they can serve as cornerstones for understanding the multiscale phenomena of high-Reynolds-number boundary layers.


Author(s):  
G. Trittler ◽  
E. Eckert ◽  
M. Göing

Hypersonic aircraft projects are highly dependant on efficient propulsion systems. High performance and integration within the airframe play a vital role in the overall concept. Particular attention must be paid to the exhaust system that is submitted to a wide range of operational requirements. An optimization of the nozzle geometry for high flight Mach numbers will lead to a low performance at the transonic flight regime. The additional use of secondary ejector air flow at transonic speeds is one option to improve the thrust behaviour of the nozzle. In the presented paper performance data of single expansion ramp ejector type nozzles are predicted using a calculation model based on a method-of-characteristics algorithm. For optimization purposes the effects of various design parameters on axial thrust coefficient and thrust vector angle are discussed. The geometric parameters investigated are the length of the lower nozzle wall and its deflection angle as well as the ejector slot location and its cross-section.


Author(s):  
Dimitar Radev ◽  
Izabella Lokshina ◽  
Svetla Radeva

The paper examines self-similar properties of real telecommunications network traffic data over a wide range of time scales. These self-similar properties are very different from the properties of traditional models based on Poisson and Markov-modulated Poisson processes. Simulation with stochastic and long range dependent traffic source models is performed, and the algorithms for buffer overflow simulation for finite buffer single server model under self-similar traffic load SSM/M/1/B are explained. The algorithms for modeling fixed-length sequence generators that are used to simulate self-similar behavior of wireless IP network traffic are developed and applied. Numerical examples are provided, and simulation results are analyzed.


2019 ◽  
Vol 7 (6) ◽  
pp. 186 ◽  
Author(s):  
Umberto Andriolo

Within the nearshore area, three wave transformation domains can be distinguished based on the wave properties: shoaling, surf, and swash zones. The identification of these distinct areas is relevant for understanding nearshore wave propagation properties and physical processes, as these zones can be related, for instance, to different types of sediment transport. This work presents a technique to automatically retrieve the nearshore wave transformation domains from images taken by coastal video monitoring stations. The technique exploits the pixel intensity variation of image acquisitions, and relates the pixel properties to the distinct wave characteristics. This allows the automated description of spatial and temporal extent of shoaling, surf, and swash zones. The methodology was proven to be robust, and capable of spotting the three distinct zones within the nearshore, both cross-shore and along-shore dimensions. The method can support a wide range of coastal studies, such as nearshore hydrodynamics and sediment transport. It can also allow a faster and improved application of existing video-based techniques for wave breaking height and depth-inversion, among others.


2009 ◽  
Vol 131 (5) ◽  
Author(s):  
Alfred von Loebbecke ◽  
Rajat Mittal ◽  
Frank Fish ◽  
Russell Mark

Three-dimensional fully unsteady computational fluid dynamic simulations of five Olympic-level swimmers performing the underwater dolphin kick are used to estimate the swimmer’s propulsive efficiencies. These estimates are compared with those of a cetacean performing the dolphin kick. The geometries of the swimmers and the cetacean are based on laser and CT scans, respectively, and the stroke kinematics is based on underwater video footage. The simulations indicate that the propulsive efficiency for human swimmers varies over a relatively wide range from about 11% to 29%. The efficiency of the cetacean is found to be about 56%, which is significantly higher than the human swimmers. The computed efficiency is found not to correlate with either the slender body theory or with the Strouhal number.


Author(s):  
Norio Kondo

This paper presents numerical results for flow-induced oscillations of an elastically supported circular cylinder, which is immersed in a high Reynolds number flow. The flow-induced oscillations of the circular cylinder at subcritical Reynolds numbers have been investigated by many researchers, and the interested phenomena with respect to the oscillations have been found in a wide range of the Scruton number. For the flow-induced oscillation of the circular cylinder with high mass ratio, it is well-known that there is the peak value of amplitudes at near the critical reduced velocity. Therefore, we computer flow-induced oscillations of a circular cylinder with a mass ratio of 8, which is placed in a high Reynolds number flow, by three-dimensional simulation, and the numerical results are compared with the results of flow-induced oscillations of the circular cylinder immersed in a subcritical Reynolds number flow.


Sign in / Sign up

Export Citation Format

Share Document