Preferential orientation of spheroidal particles in wavy flow

2018 ◽  
Vol 856 ◽  
pp. 850-869 ◽  
Author(s):  
Michelle H. DiBenedetto ◽  
Nicholas T. Ouellette

We report a theoretical study of the angular dynamics of small, non-inertial spheroidal particles in a linear wave field. We recover the observation recently reported by DiBenedetto et al. (J. Fluid Mech., vol. 837, 2018, pp. 320–340) that the orientation of these spheroids tends to a stable limit cycle consisting of a preferred value with a superimposed oscillation. We show that this behaviour is a consequence of finite wave amplitude and is the angular analogue of Stokes drift. We derive expressions for both the preferred orientation of the particles, which depends only on particle shape, and the amplitude of the oscillation about this preferred value, which additionally depends on the wave parameters and the depth of the particle in the water column.

2017 ◽  
Vol 34 (9) ◽  
pp. 2029-2042 ◽  
Author(s):  
André Amador ◽  
Sergio Jaramillo ◽  
Geno Pawlak

AbstractA theoretical model is developed to describe how autonomous underwater vehicle (AUV)-based current measurements are influenced by a surface wave field. The model quantifies a quasi-Lagrangian, wave-induced velocity bias as a function of the local wave conditions, and the vehicle’s depth and velocity using a first-order expansion of the linear wave solution. The theoretical bias is verified via field experiments carried out off the coast of Oahu, Hawaii. Spatially averaged along- and cross-track AUV velocity measurements are calculated over one effective wavelength and compared with time-averaged, fixed ADCP measurements in a range of wave and current conditions. The wave-induced bias is calculated using wave directional spectra derived from fixed ADCP data. Ensemble-averaged velocity differences confirm the presence of the wave-induced bias O(1–5) cm s−1 and reveal an additional bias in the direction of the vehicle motion O(1) cm s−1. The analysis considers velocity measurements made using a Remote Environmental Monitoring Units (REMUS) 100 AUV, but the content applies to any small AUV (vehicle size wavelength) immersed in a wave field.


Filomat ◽  
2017 ◽  
Vol 31 (16) ◽  
pp. 5271-5293
Author(s):  
A.K. Pal ◽  
P. Dolai ◽  
G.P. Samanta

In this paper we have studied the dynamical behaviours of a delayed two-species competitive system affected by toxicant with imprecise biological parameters. We have proposed a method to handle these imprecise parameters by using parametric form of interval numbers. We have discussed the existence of various equilibrium points and stability of the system at these equilibrium points. In case of toxic stimulatory system, the delay model exhibits a stable limit cycle oscillation. Computer simulations are carried out to illustrate our analytical findings.


Author(s):  
Abdulghafoor Jasim Salim ◽  
Kais Ismail Ebrahem ◽  
Suhirman

Abstract: In this paper we study the stability of one of a non linear autoregressive model with trigonometric term  by using local linearization method proposed by Tuhro Ozaki .We find the singular point ,the stability of the singular point and the limit cycle. We conclude  that the proposed model under certain conditions have a non-zero singular point which is  a asymptotically salable ( when  0 ) and have an  orbitaly stable limit cycle . Also we give some examples in order to explain the method. Key Words : Non-linear Autoregressive model; Limit cycle; singular point; Stability.


2006 ◽  
Vol Volume 5, Special Issue TAM... ◽  
Author(s):  
Pierre Auger ◽  
Abderrahim El Abdllaoui ◽  
Rachid Mchich

International audience We present the method of aggregation of variables in the case of ordinary differential equations. We apply the method to a prey - predator model in a multi - patchy environment. In this model, preys can go to a refuge and therefore escape to predation. The predator must return regularly to his terrier to feed his progeny. We study the effect of density-dependent migration on the global stability of the prey-predator system. We consider constant migration rates, but also density-dependent migration rates. We prove that the positif equilibrium is globally asymptotically stable in the first case, and that its stability changes in the second case. The fact that we consider density-dependent migration rates leads to the existence of a stable limit cycle via a Hopf bifurcation. Nous présentons les grandes lignes de laméthode d'agrégation des variables dans les systèmes d'équations différentielles ordinaires. Nous appliquons laméthode à un modèle proie-prédateur spatialisé. Dans ce modèle, les proies peuvent échapper à la prédation en se réfugiant sur un site. Le prédateur doit aussi retourner régulièrement dans son terrier pour nourrir sa progéniture. Nous étudions les effets de migration dépendant de la densité des populations sur la stabilité globale du système proie-prédateur. Nous considérons des taux de migration constants, puis densité-dépendants. Dans le cas de taux constants il existe un équilibre positif toujours stable alors que dans le cas de taux de migration densité-dépendants, il existe un cycle limite stable via une bifurcation de Hopf.


2016 ◽  
Vol 26 (02) ◽  
pp. 1650034 ◽  
Author(s):  
Jicai Huang ◽  
Xiaojing Xia ◽  
Xinan Zhang ◽  
Shigui Ruan

It was shown in [Li & Xiao, 2007] that in a predator–prey model of Leslie type with simplified Holling type IV functional response some complex bifurcations can occur simultaneously for some values of parameters, such as codimension 1 subcritical Hopf bifurcation and codimension 2 Bogdanov–Takens bifurcation. In this paper, we show that for the same model there exists a unique degenerate positive equilibrium which is a degenerate Bogdanov–Takens singularity (focus case) of codimension 3 for other values of parameters. We prove that the model exhibits degenerate focus type Bogdanov–Takens bifurcation of codimension 3 around the unique degenerate positive equilibrium. Numerical simulations, including the coexistence of three hyperbolic positive equilibria, two limit cycles, bistability states (one stable equilibrium and one stable limit cycle, or two stable equilibria), tristability states (two stable equilibria and one stable limit cycle), a stable limit cycle enclosing a homoclinic loop, a homoclinic loop enclosing an unstable limit cycle, or a stable limit cycle enclosing three unstable hyperbolic positive equilibria for various parameter values, confirm the theoretical results.


In this series of papers we re-examine, using recently developed techniques, some chemical kinetic models that have appeared in the literature with a view to obtaining a complete description of all the qualitatively distinct behaviour that the system can exhibit. Each of the schemes is describable by two coupled ordinary differential equations and contain at most three independent parameters. We find that even with these relatively simple chemical schemes there are regions of parameter space in which the systems display behaviour not previously found. Quite often these regions are small and it seems unlikely that they would be found via classical methods. In part I of the series we consider one of the thermally coupled kinetic oscillator models studied by Sal’nikov. He showed that there is a region in parameter space in which the system would be in a state of undamped oscillations because the relevant phase portrait consists of an unstable steady state surrounded by a stable limit cycle. Our analysis has revealed two further regions in which the phase portraits contain, respectively, two limit cycles of opposite stability enclosing a stable steady state and three limit cycles of alternating stability surrounding an unstable steady state. This latter region is extremely small, so much so that it could be reasonably neglected in any predictions made from the model.


Author(s):  
Sagiri Ishimoto ◽  
Hiromu Hashimoto

Abstract This paper describes a self-excited vibration model of dragonfly’s wing based on the concept of bionic design, which is expected as a technological hint to solve the scale effect problems in developing the small- or micro-sized actuators. From a morphological consideration of flight muscle of dragonfly, the nonlinear equation of motion for the wing considering the air drag force due to flapping of wing is formulated. In the model, the dry friction-type and Van der Pol-type driving forces are employed to power the flight muscles and to generate the stable self-excited wing vibration. Two typical Japanese dragonflies, “Anotogaster sieboldii Selys” and “Sympetrum frequens Selys”, are selected as examples, and the self-excited vibration analyses for these dragonfly’s wings are demonstrated. The linearized solutions for the nonlinear equation of motion are compared with the nonlinear solutions, and the vibration system parameters to generate the stable limit cycle of self-excited wing vibration are determined.


2016 ◽  
Vol 13 (6) ◽  
pp. 172988141665774
Author(s):  
Taihui Zhang ◽  
Honglei An ◽  
Qing Wei ◽  
Wenqi Hou ◽  
Hongxu Ma

Differing from the commonly used spring loaded inverted pendulum model, this paper makes use of a two-mass spring model considering impact between the foot and ground which is closer to the real hopping robot. The height of upper mass which includes the upper leg and body is the main control objective. Then we develop a new kind of control algorithm acting on two levels: The upper level aims to achieve the desired velocity of the upper mass based on a stable limit cycle, where three different controllers are used to regulate the limit cycle; the target of the lower level is to drive the system to converge to the desired state and control the contact force between the foot and ground within an appropriate range based on the inner force control at the same time. Simulation results presented in this paper confirm the efficiency of this control algorithm.


Sign in / Sign up

Export Citation Format

Share Document