Magnetothermodynamic Peristaltic Flow of Bingham Non-Newtonian Fluid in Eccentric Annuli with Slip Velocity and Temperature Jump Conditions

2013 ◽  
Vol 29 (3) ◽  
pp. 493-506 ◽  
Author(s):  
M. F. El-Sayed ◽  
N. T. M. Eldabe ◽  
A. Y. Ghaly ◽  
H. M. Sayed

AbstractIn this paper, we studied the peristaltic flow and heat transfer of an incompressible, electrically conducting Bingham Non-Newtonian fluid in an eccentric uniform annulus in the presence of external uniform magnetic field with slip velocity and temperature jump at the wall conditions. The viscous and Joule dissipations are taken into account. The inner tube is rigid and moving with a constant axial velocity, while the outer tube has a sinusoidal wave traveling down its wall. Under zero Reynolds number condition with the long wavelength approximation, the axial velocity and the stream function are obtained analytically. A numerical solution for the governing partial differential equation of energy is performed in order to analyze the temperature distribution. The effects of all parameters of the problem are numerically discussed and graphically explained.

2010 ◽  
Vol 65 (12) ◽  
pp. 1121-1127 ◽  
Author(s):  
Tasawar Hayat ◽  
Najma Saleem ◽  
Awatif A. Hendi

An analysis has been carried out for peristaltic flow and heat transfer of a Carreau fluid in an asymmetric channel with slip effect. The governing problem is solved under long wavelength approximation. The variations of pertinent dimensionless parameters on temperature are discussed. Pumping and trapping phenomena are studied.


2016 ◽  
Vol 138 (11) ◽  
Author(s):  
A. Sutradhar ◽  
J. K. Mondal ◽  
P. V. S. N. Murthy ◽  
Rama Subba Reddy Gorla

Peristaltic transport of electrically conducting blood through a permeable microvessel is investigated by considering the Casson model in the presence of an external magnetic field. The reabsorption process across the permeable microvessel wall is regarded to govern by Starling's hypothesis. Under the long wavelength approximation and low-Reynolds number assumption, the nonlinear governing equations along with the boundary conditions are solved using a perturbation technique. Starling's hypothesis at the microvessel wall provides a second-order ordinary differential equation to be solved numerically for pressure distribution which in turn gives the stream function and temperature field. Also, the location of the interface between the plug and core regions is obtained from the axial velocity. Due to an increasing reabsorption process, the axial velocity is found to increase initially but decreases near the outlet. The temperature is appreciably intensified by virtue of the Joule heating produced due to the electrical conductivity of blood.


Author(s):  
U. P. Singh ◽  
Amit Medhavi ◽  
R. S. Gupta ◽  
Siddharth Shankar Bhatt

The present investigation is concerned with the problem of heat transfer and peristaltic flow of non-Newtonian fluid using Rabinowitsch fluid model through a channel under long wavelength and low Reynolds number approximation. Expressions for velocity, pressure gradient, pressure rise, friction force and temperature have been obtained. The effect of different parameters on velocity, pressure gradient, pressure rise, streamlines, friction force and temperature have been discussed through graphs.


2015 ◽  
Vol 70 (7) ◽  
pp. 513-520 ◽  
Author(s):  
Ehnber Naheed Maraj ◽  
Sohail Nadeem

AbstractThe present work is the mathematical investigation of peristaltic flow of Rabinowitsch fluid in a curved channel. The current problem is modeled and solutions for non-dimensional differential equation are obtained under low Reynolds number and long wavelength approximation. The effects of long lasting non-dimensional parameters on exact solution for velocity profile, pressure rise and shear stresses are studied graphically in the last section. Tables are also incorporated for shear stresses at the walls of the curved channel.


2010 ◽  
Vol 02 (02) ◽  
pp. 437-455 ◽  
Author(s):  
S. SRINIVAS ◽  
R. MUTHURAJ

Peristaltic flow of a Jeffrey fluid in an inclined asymmetric channel is undertaken when the no-slip condition at the channel wall is no longer valid. The considered fluid is incompressible and electrically conducting. The flow is investigated in a waveframe of reference moving with the velocity of the wave. The analytic solution has been derived for the stream function under long wavelength and low Reynolds number assumptions. The effect of slip and non-Newtonian parameter on the axial velocity and shear stress are discussed in detail. The salient features of pumping and trapping are discussed with particular focus on the effect of slip and non-Newtonian parameters.


2000 ◽  
Vol 78 (9) ◽  
pp. 875-882 ◽  
Author(s):  
H A Attia

The steady laminar flow of an incompressible viscous electrically conducting non-Newtonian fluid of second grade impinging normal to a plane wall with heat transfer is investigated. An externally applied uniform magnetic field is applied normal to the wall, which is maintained at a constant temperature. A numerical solution for the governing momentum and energy equations is obtained. The effect of the characteristics of the non-Newtonian fluid and the magnetic field on both the flow and heat transfer is outlined. PACS Nos.: 47.50 and 47.15


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Abeer A. Shaaban ◽  
Mohamed Y. Abou-zeid

We investigated the influence of heat and mass transfer on the peristaltic flow of magnetohydrodynamic Eyring-Powell fluid under low Reynolds number and long-wavelength approximation. The fluid flows between two infinite cylinders; the inner tube is uniform, rigid, and rest, while the outer flexible tube has a sinusoidal wave traveling down its wall. The governing equations are solved numerically using finite-difference technique. The velocity, temperature, and concentration distribution are obtained. The features of flow characteristics are analyzed by plotting graphs and discussed in detail.


2010 ◽  
Vol 65 (3) ◽  
pp. 191-196 ◽  
Author(s):  
Nasir Ali ◽  
Muhammad Sajid ◽  
Tasawar Hayat

This study is concerned with the peristaltic flow of a viscous fluid in a curved channel. Mathematically the problem is governed by two partial differential equations. Closed form solutions of the stream function, axial velocity, and pressure gradient are developed under long wavelength and low Reynolds number assumptions. The influence of curvature is analyzed on various flow quantities of interest.


2013 ◽  
Vol 80 (2) ◽  
Author(s):  
S. Hina ◽  
M. Mustafa ◽  
T. Hayat ◽  
A. Alsaedi

The effects of wall properties on the peristaltic flow of an incompressible pseudoplastic fluid in a curved channel are investigated. The relevant equations are modeled. Long wavelength and low Reynolds number approximations are adopted. The stream function and axial velocity are derived. The variations of the embedding parameters into the problem are carefully discussed. It is noted that the velocity profiles are not symmetric about the central line of the curved channel.


Sign in / Sign up

Export Citation Format

Share Document