scholarly journals Diurnal fluctuations of glacier surface velocity observed with terrestrial radar interferometry at Laohugou No. 12 Glacier, western Qilian mountains, China

2019 ◽  
Vol 65 (250) ◽  
pp. 239-248 ◽  
Author(s):  
LIN LIU ◽  
LIMING JIANG ◽  
YONGLING SUN ◽  
HANSHENG WANG ◽  
YAFEI SUN ◽  
...  

ABSTRACTMeasurements of short-interval variations in glacier surface velocity, which contribute to our understanding of ice motion mechanisms, remain scarce on the Tibetan Plateau. Here we present sub-hourly measurements of glacier surface motion variations at the terminus region of Laohugou No. 12 Glacier. Field observations were collected over 4 d in July 2015 from terrestrial radar interferometry. The observed glacier displacement time series are generally in agreement with the results measured by differential GPS and highlight that glacier surface velocity is characterized by clear diurnal fluctuations in the study period. During day-time hours, glacier flow speeds were higher than 3.0 mm h−1, whereas they were below 1.0 mm h−1 during night-time hours. The large diurnal fluctuations of glacier surface velocity indicate that variations in basal slip are the dominant motion mechanism. Moreover, a positive correlation (R = 0.82, P < 0.001) between air temperature and glacier surface velocity suggests that glacier motion variations are probably affected by changes in air temperature during the ablation season.

2018 ◽  
Vol 64 (243) ◽  
pp. 132-147 ◽  
Author(s):  
HONGBO ZHANG ◽  
FAN ZHANG ◽  
GUOQING ZHANG ◽  
YAOMING MA ◽  
KUN YANG ◽  
...  

ABSTRACTThe MODerate resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) data have been widely used for air temperature estimation in mountainous regions where station observations are sparse. However, the performance of MODIS LST in high-elevation glacierized areas remains unclear. This study investigates air temperature estimation in glacierized areas based on ground observations at four glaciers across the Tibetan Plateau. Before being used to estimate the air temperature, MODIS LST data are evaluated at two of the glaciers, which indicates that MODIS night-time LST is more reliable than MODIS daytime LST data. Then, linear models based on each of the individual MODIS LST products from two platforms (Terra and Aqua) and two overpasses (night-time and daytime) are built to estimate daily mean, minimum and maximum air temperatures in glacierized areas. Regional glacier surface (RGS) models (mean /-mean-square differences: 3.3, 3.0 and 4.8°C for daily mean, minimum and maximum air temperatures, respectively) show higher accuracy than local non-glacier surface models (mean root-mean-square differences: 4.2, 4.7 and 5.7°C). In addition, the RGS models based on MODIS night-time LST perform better to estimate daily mean, minimum and maximum air temperatures than using temperature lapse rate derived from local stations.


1980 ◽  
Vol 37 (9) ◽  
pp. 1433-1438 ◽  
Author(s):  
M. H. Papst ◽  
J. A. Mathias ◽  
J. Barica

Periods of summer oxygen depletion (summerkill), occurring in shallow prairie lakes, are dependent on the collapse of algae blooms but are not an obligatory result of the collapse. A period of thermal instability following this bloom collapse, or coincidental with it, is a necessary requirement. Wind stress and night-time air temperature are the principal factors determining the degree of thermal stability. These findings explain the speed with which oxygen depletion can occur, that the occurrence of algal biomass collapses without severe oxygen depletion (partial collapses), and the correlation between the occurrence of periods of lake oxygen depletion and changing weather conditions.Key words: lake, summerkill, anoxia, mixing, oxygen depletion, thermal stability, weather, Aphanizomenon


2018 ◽  
Vol 64 (248) ◽  
pp. 969-976 ◽  
Author(s):  
J. W. SANDERS ◽  
K. M. CUFFEY ◽  
K. R. MACGREGOR ◽  
J. L. KAVANAUGH ◽  
C. F. DOW

ABSTRACTFollowing pioneering work in Norway, cirque glaciers have widely been viewed as rigidly rotating bodies. This model is incorrect for basin-filling cirque glaciers, as we have demonstrated at West Washmawapta Glacier, a small glacier in the Canadian Rocky Mountains. Here we report observations at the same glacier that assess whether complex temporal variations of flow also occur. For parts of three summers, we measured daily displacements of the glacier surface. In one year, four short-duration speed-up events were recorded. Three of the events occurred during the intervals of warmest weather, when melt was most rapid; the fourth event occurred immediately following heavy rain. We interpret the speed-up events as manifestations of enhanced water inputs to the glacier bed and associated slip lubrication by increased water volumes and pressures. No further speed-ups occurred in the final month of the melt season, despite warm temperatures and several rainstorms; the dominant subglacial water system likely transformed from one of poorly connected cavities to one with an efficient channel network. The seasonal evolution of hydrology and flow resembles behaviors documented at other, larger temperate glaciers and indicates that analyses of cirque erosion cannot rely on simple assumptions about ice dynamics.


2021 ◽  
Author(s):  
Bas Altena ◽  
Andreas Kääb ◽  
Bert Wouters

Abstract. In recent years a vast amount of glacier surface velocity data from satellite imagery has emerged based on correlation between repeat images. Thereby, much emphasis has been put on fast processing of large data volumes. The metadata of such measurements are often highly simplified when the measurement precision is lumped into a single number for the whole dataset, although the error budget of image matching is in reality not isotropic and constant over the whole velocity field. The spread of the correlation peak of individual image offset measurements is dependent on the image content and the non-uniform flow of the ice. Precise dispersion estimates for each individual velocity measurement can be important for inversion of, for instance, rheology, ice thickness and/or bedrock friction. Errors in the velocity data can propagate into derived results in a complex and exaggerating way, making the outcomes very sensitive to velocity noise and errors. Here, we present a computationally fast method to estimate the matching precision of individual displacement measurements from repeat imaging data, focussing on satellite data. The approach is based upon Gaussian fitting directly on the correlation peak and is formulated as a linear least squares estimation, making its implementation into current pipelines straightforward. The methodology is demonstrated for Sermeq Kujalleq, Greenland, a glacier with regions of strong shear flow and with clearly oriented crevasses, and Malaspina Glacier, Alaska. Directionality within an image seems to be dominant factor influencing the correlation dispersion. In our cases these are crevasses and moraine bands, while a relation to differential flow, such as shear, is less pronounced.


1986 ◽  
Vol 32 (110) ◽  
pp. 101-119 ◽  
Author(s):  
Almut Iken ◽  
Robert A. Bindschadler

AbstractDuring the snow-melt season of 1982, basal water pressure was recorded in 11 bore holes communicating with the subglacial drainage system. In most of these holes the water levels were at approximately the same depth (around 70 m below surface). The large variations of water pressure, such as diurnal variations, were usually similar at different locations and in phase. In two instances of exceptionally high water pressure, however, systematic phase shifts were observed; a wave of high pressure travelled down-glacier with a velocity of approximately 100 m/h.The glacier-surface velocity was measured at four lines of stakes several times daily. The velocity variations correlated with variations in subglacial water pressure. The functional relationship of water pressure and velocity suggests that fluctuating bed separation was responsible for the velocity variations. The empirical functional relationship is compared to that of sliding over a perfectly lubricated sinusoidal bed. On the basis of the measured velocity-pressure relationship, this model predicts a reasonable value of bed roughness but too high a sliding velocity and unstable sliding at too low a water pressure. The main reason for this disagreement is probably the neglect of friction from debris in the sliding model.The measured water pressure was considerably higher than that predicted by the theory of steady flow through straight cylindrical channels near the glacier bed. Possible reasons are considered. The very large disagreement between measured and predicted pressure suggests that no straight cylindrical channels may have existed.


2016 ◽  
Author(s):  
Jacques D Charlwood

Background: With the possible implications of global warming, the effect of temperature on the dynamics of malaria vectors in Africa has become a subject of increasing interest. Information from the field is, however, relatively sparse. We describe the effect of ambient temperature over a five-year period on the dynamics of An. funestus and An. gambiae s.l., collected from a single village in southern Mozambique where temperatures varied from a night-time minimum of 6oC in the cool season to a daytime maximum of 35oC in the hot season. Results: Mean daily air temperatures varied from 34o C to 20oC and soil temperatures varied from 26 o C to 12 o C. Diurnal variation was greatest in the cooler months of the year and were greater in air temperatures than soil temperatures. During the study 301, 705 female An. funestus were collected in 6043 light-trap collections, 161, 466 in 7397 exit collections and 16, 995 in 1315 resting collections. The equivalent numbers for An. gambiae s.l. are 72, 475 in light-traps, 33, 868 in exit collections and 5, 333 from indoor resting collections. Numbers of mosquito were greatest in the warmer months. Numbers of An. gambiae s.l. went through a one hundredfold change (from a mean of 0.14 mosquitoes a night to 14) whereas numbers of An. funestus merely doubled (from a mean of 20 to 40 a night). The highest environmental correlations and mosquito numbers were between mean air temperature (r2 = 0.52 for An. funestus and 0.77 for An. gambiae s.l.). Numbers of mosquito collected were not related to rainfall with lags of up to four weeks. Numbers of both gravid and unfed An. gambiae complex females in exit collections continued to increase at all temperatures recorded but gravid females of An. funestus decreased at temperatures above 28oC. Overall the numbers of gravid and unfed An. funestus collected in exit collections were not correlated (p = 0.07). For an unknown reason the number of An. gambiae s.l. fell below monitoring thresholds during the study. Conclusions: Mean air temperature was the most important environmental parameter affecting both vectors in this part of Mozambique. Numbers of An. gambiae s.l. increased at all temperatures recorded whilst An. funestus appeared to be adversely affected by temperatures of 28oC and above. These differences may influence the distribution of the vectors as the planet warms.


2016 ◽  
Vol 47 (4) ◽  
pp. 888-901 ◽  
Author(s):  
Marek Marciniak ◽  
Anna Szczucińska

The aim of this paper is to study diurnal fluctuations of the water level in streams draining headwaters and to identify the controlling factors. The fieldwork was carried out in the Gryżynka River catchment, western Poland. The water levels of three streams draining into the headwaters via a group of springs were monitored in the years 2011–2014. Changes in the water pressure and water temperature were recorded by automatic sensors – Schlumberger MiniDiver type. Simultaneously, Barodiver type sensors were used to record air temperature and atmospheric pressure, as it was necessary to adjust the data collected by the MiniDivers calculate the water level. The results showed that diurnal fluctuations in water level of the streams ranged from 2 to 4 cm (approximately 10% of total water depth) and were well correlated with the changes in evapotranspiration as well as air temperature. The observed water level fluctuations likely have resulted from processes occurring in the headwaters. Good correlation with atmospheric conditions indicates control by daily variations of the local climate. However, the relationship with water temperature suggests that fluctuations are also caused by changes in the temperature-dependent water viscosity and, consequently, by diurnal changes in the hydraulic conductivity of the hyporheic zone.


Sign in / Sign up

Export Citation Format

Share Document