scholarly journals Semi-automated open water iceberg detection from Landsat applied to Disko Bay, West Greenland

2019 ◽  
Vol 65 (251) ◽  
pp. 468-480 ◽  
Author(s):  
JESSICA SCHEICK ◽  
ELLYN M. ENDERLIN ◽  
GORDON HAMILTON

ABSTRACTChanges in Greenland's marine-terminating outlet glaciers have led to changes in the flux of icebergs into Greenland's coastal waters, yet icebergs remain a relatively understudied component of the ice-ocean system. We developed a simple iceberg delineation algorithm for Landsat imagery. A machine learning-based cloud mask incorporated into the algorithm enables us to extract iceberg size distributions from open water even in partially cloudy scenes. We applied the algorithm to the Landsat archive covering Disko Bay, West Greenland, to derive a time series of iceberg size distributions from 2000–02 and 2013–15. The time series captures a change in iceberg size distributions, which we interpret as a result of changes in the calving regime of the parent glacier, Sermeq Kujalleq (Jakobshavn Isbræ). The change in calving style associated with the disintegration and disappearance of Sermeq Kujalleq's floating ice tongue resulted in the production of more small icebergs. The increased number of small icebergs resulted in increasingly negative power law slopes fit to iceberg size distributions in Disko Bay, suggesting that iceberg size distribution time series provide useful insights into changes in calving dynamics.

2018 ◽  
Author(s):  
Jessica Scheick ◽  
Ellyn M. Enderlin ◽  
Gordon Hamilton

Abstract. Over the last two decades, the flux of icebergs into Greenland's fjords and coastal waters has increased, concurrent with changes in mass loss and dynamics of Greenland's marine-terminating outlet glaciers. Icebergs impact fjord circulation and stratification, freshwater flux, and ecosystem structure and pose a hazard to marine navigation and infrastructure, yet they remain a relatively understudied component of the ice-ocean system. Icebergs are easily detected in optical satellite imagery, but manual analysis to derive an iceberg size distribution time series is time prohibitive and partially cloudy scenes pose a challenge to automated analysis. Here we present a novel, computationally simple machine learning-based cloud mask for Landsat 7 and 8. This mask is incorporated into a larger iceberg delineation algorithm that allows us to extract iceberg size distributions, including outlines of individual icebergs, for cloud-free and partially cloud-covered Landsat scenes. We applied the algorithm to the Landsat archive covering Disko Bay, west Greenland, to derive a time series of iceberg size distributions from 2000–2002 and 2013–2015. The time series captures the seasonal signal in ice cover resulting from the annual cycles of sea ice formation and breakup and calving of Jakobshavn Isbrae, the dominant source of icebergs in Disko Bay. We note a change in this annual signal during the latter time period, likely a direct result of changes in the calving regime of Jakobshavn Isbrae. During 2000–2002, Jakobshavn Isbrae's floating ice tongue disintegrated and disappeared, transitioning the glacier from low energy, tabular iceberg calving to high energy, full thickness calving and the production of more small icebergs. This transition is also evident in the change in the number of small (~ 225 m2) icebergs found on the bay, which increased during the latter period. The change in the number of small icebergs also led to increasingly negative power law slopes fit to the iceberg size distribution time series. This work suggests that iceberg size distribution time series may provide useful insights into changes in calving dynamics and the physics of iceberg decay, while aiding marine and navigation safety in iceberg laden waters.


2021 ◽  
Author(s):  
Stephan Paul ◽  
Marcus Huntemann

<p>The frequent presence of cloud cover in polar regions limits the use of the Moderate-Resolution Imageing Spectroradiometer (MODIS) and similar instruments for the investigation and monitoring of sea-ice polynyas compared to passive-microwave-based sensors. The very low thermal contrast between present clouds and the sea-ice surface in combination with the lack of available visible and near-infrared channels during polar nighttime results in deficiencies in the MODIS cloud mask and dependent MODIS data products. This leads to frequent misclassifications of i) present clouds as sea ice/open water (false-negative) and ii) open-water/thin-ice areas as clouds (false-positive), which results in an underestimation of actual polynya area and subsequent derived information. Here, we present a novel machine-learning based approach using a deep neural network that is able to reliably discriminate between clouds, sea-ice, and open-water/thin-ice areas in a given swath solely from thermal-infrared MODIS channels and derived additional information. Compared to the reference MODIS sea-ice product for the year 2017, our data results in an overall increase of 20% in annual swath-based coverage for the Brunt Ice Shelf polynya, attributed to an improved cloud-cover discrimination and the reduction of false-positive classifications. At the same time, the mean annual polynya area decreases by 44% through the reduction of false-negative classifications of warm clouds as thin ice. Additionally, higher spatial coverage results in an overall better sub-daily representation of thin-ice conditions that cannot be reconstructed with current state-of-the-art cloud-cover compensation methods.</p>


2020 ◽  
Author(s):  
Pathikkumar Patel ◽  
Bhargav Lad ◽  
Jinan Fiaidhi

During the last few years, RNN models have been extensively used and they have proven to be better for sequence and text data. RNNs have achieved state-of-the-art performance levels in several applications such as text classification, sequence to sequence modelling and time series forecasting. In this article we will review different Machine Learning and Deep Learning based approaches for text data and look at the results obtained from these methods. This work also explores the use of transfer learning in NLP and how it affects the performance of models on a specific application of sentiment analysis.


2020 ◽  
Author(s):  
Hsiao-Ko Chang ◽  
Hui-Chih Wang ◽  
Chih-Fen Huang ◽  
Feipei Lai

BACKGROUND In most of Taiwan’s medical institutions, congestion is a serious problem for emergency departments. Due to a lack of beds, patients spend more time in emergency retention zones, which make it difficult to detect cardiac arrest (CA). OBJECTIVE We seek to develop a Drug Early Warning System Model (DEWSM), it included drug injections and vital signs as this research important features. We use it to predict cardiac arrest in emergency departments via drug classification and medical expert suggestion. METHODS We propose this new model for detecting cardiac arrest via drug classification and by using a sliding window; we apply learning-based algorithms to time-series data for a DEWSM. By treating drug features as a dynamic time-series factor for cardiopulmonary resuscitation (CPR) patients, we increase sensitivity, reduce false alarm rates and mortality, and increase the model’s accuracy. To evaluate the proposed model, we use the area under the receiver operating characteristic curve (AUROC). RESULTS Four important findings are as follows: (1) We identify the most important drug predictors: bits (intravenous therapy), and replenishers and regulators of water and electrolytes (fluid and electrolyte supplement). The best AUROC of bits is 85%, it means the medical expert suggest the drug features: bits, it will affect the vital signs, and then the evaluate this model correctly classified patients with CPR reach 85%; that of replenishers and regulators of water and electrolytes is 86%. These two features are the most influential of the drug features in the task. (2) We verify feature selection, in which accounting for drugs improve the accuracy: In Task 1, the best AUROC of vital signs is 77%, and that of all features is 86%. In Task 2, the best AUROC of all features is 85%, which demonstrates that thus accounting for the drugs significantly affects prediction. (3) We use a better model: For traditional machine learning, this study adds a new AI technology: the long short-term memory (LSTM) model with the best time-series accuracy, comparable to the traditional random forest (RF) model; the two AUROC measures are 85%. It can be seen that the use of new AI technology will achieve better results, currently comparable to the accuracy of traditional common RF, and the LSTM model can be adjusted in the future to obtain better results. (4) We determine whether the event can be predicted beforehand: The best classifier is still an RF model, in which the observational starting time is 4 hours before the CPR event. Although the accuracy is impaired, the predictive accuracy still reaches 70%. Therefore, we believe that CPR events can be predicted four hours before the event. CONCLUSIONS This paper uses a sliding window to account for dynamic time-series data consisting of the patient’s vital signs and drug injections. The National Early Warning Score (NEWS) only focuses on the score of vital signs, and does not include factors related to drug injections. In this study, the experimental results of adding the drug injections are better than only vital signs. In a comparison with NEWS, we improve predictive accuracy via feature selection, which includes drugs as features. In addition, we use traditional machine learning methods and deep learning (using LSTM method as the main processing time series data) as the basis for comparison of this research. The proposed DEWSM, which offers 4-hour predictions, is better than the NEWS in the literature. This also confirms that the doctor’s heuristic rules are consistent with the results found by machine learning algorithms.


Author(s):  
Md. Mehedi Hasan Shawon ◽  
Sumaiya Akter ◽  
Md. Kamrul Islam ◽  
Sabbir Ahmed ◽  
Md. Mosaddequr Rahman

2020 ◽  
pp. 1-12
Author(s):  
Linuo Wang

Injuries and hidden dangers in training have a greater impact on athletes ’careers. In particular, the brain function that controls the motor function area has a greater impact on the athlete ’s competitive ability. Based on this, it is necessary to adopt scientific methods to recognize brain functions. In this paper, we study the structure of motor brain-computer and improve it based on traditional methods. Moreover, supported by machine learning and SVM technology, this study uses a DSP filter to convert the preprocessed EEG signal X into a time series, and adjusts the distance between the time series to classify the data. In order to solve the inconsistency of DSP algorithms, a multi-layer joint learning framework based on logistic regression model is proposed, and a brain-machine interface system of sports based on machine learning and SVM is constructed. In addition, this study designed a control experiment to improve the performance of the method proposed by this study. The research results show that the method in this paper has a certain practical effect and can be applied to sports.


Sign in / Sign up

Export Citation Format

Share Document