scholarly journals New methods of geothermal potential assessment in the Pannonian basin

Author(s):  
Annamária Nádor ◽  
László Sebess-Zilahi ◽  
Ágnes Rotár-Szalkai ◽  
Ágnes Gulyás ◽  
Tamara Markovic

Abstract The Pannonian basin in Central Europe is well known for its rich geothermal resources. Although geothermal energy has been utilised, mainly for direct use purposes, for a long time, there are still a lot of untapped resources. This paper presents novel methods for outlining and assessing the theoretical and technical potential of partly still unknown geothermal reservoirs, based on a case study from the Dráva basin, one of the sub-basins of the Pannonian basin along the Hungarian–Croatian border. The presented methods include reservoir delineation based on combining geological bounding surfaces of the Upper Pannonian basin-fill units with a set of isotherms deriving from a conductive geothermal model. The geothermal potential of each identified reservoir was calculated by a Monte Carlo method, which was considered as being represented by the heat content of the fluids stored in the effective pore space (‘moveable fluid’). The results underline the great untapped geothermal potential of the Dráva basin, especially that of the reservoir storing thermal water of 50–75°C, which has the largest volume and the greatest stored heat content.

2020 ◽  
Author(s):  
Eugenio Trumpy ◽  
Gianluca Gola ◽  
Alessandro Santilano ◽  
Adele Manzella ◽  
Matteo Brambilla ◽  
...  

<p>Based on a joint analysis of geothermal indicators (e.g. temperature map at different depth, surface heat flux) and practical features (e.g. restricted areas, existing research lease), two promising areas in southern Tuscany were identified to perform a more detailed geothermal resource characterization. An area is located on the north-east of the Larderello-Travale geothermal field, and the other one is located on the west of the Mt. Amiata geothermal field.</p><p>A quantitative geothermal resources assessment was performed in the aforementioned areas of Tuscany by solving numerical thermo-fluid dynamic models and by computing the geothermal potential using the ‘ThermoGIS’ software, as further developed for the Italian case (Trumpy et al., 2016).</p><p>First of all, geological and geophysical data required for geological and thermo-fluid dynamic modelling were collected and organised. The geological data were used to build a 3D geological model of the two areas of interest suitable for numerical simulations. Static temperature data gathered from the Italian National Geothermal Database together with site-specific heat flow measurements were used to calibrate the simulated steady state temperature distribution.</p><p>The geothermal potential computed by integrating geological, thermal and petro-physical information implementing the volume method used in ThermoGIS provided estimates of the heat in place and the geothermal technical potential maps. The resulting technical potential in the area close to Larderello –Travale is 330 MW<sub>e</sub> and in the Mt. Amiata sector is 50MW<sub>e</sub>.</p><p>References</p><p>Trumpy E., Botteghi S., Caiozzi F., Donato A., Gola G., Montanari D., Pluymaekers M., Santilano A., Van Wees, J.D., Manzella A. Geothermal potential assessment for a low carbon strategy: a new systematic approach applied in southern Italy. Energy 103, 167-181, 2016.</p>


2021 ◽  
Author(s):  
Tanja Petrović Pantić ◽  
Katarina Atanasković Samolov ◽  
Jana Štrbački ◽  
Milan Tomić

Abstract In order to collect and unify data about all geothermal resources in Serbia, a database is formed. The database allows us to perceive the geothermal resources of Serbia and their potential for utilization. Based on the data available in the geothermal database, the estimated temperatures of reservoirs, heat power, and geothermal energy utilization were calculated. The database contains 293 objects (springs, boreholes) registered at 160 locations with groundwater temperature in the range between 20°C and 111°C. The maximum expected temperature of the reservoir is 146°C (according to the SiO2 geothermometer). Some thermal water is cooled while mixed with cold, shallow water. Geothermal resources are mostly used for balneology and recreation, and less for heating, water supply, bottling, fish and animal farms, agriculture, and technical water. 26% of all geothermal resources is used by the local population or has not been used at all. The annual utilization of geothermal energy for direct heat is 1507 TJ/yr, and the estimated capacity of geothermal energy in Serbia is 111 MWt. The results of analytical work were presented in the form of maps with a geological and hydrogeological background. Thermal waters are mostly registrated in the area of Tertiary magmatism. The three geothermal potential areas are identified: Pannonian basin-Vojvodina Province, Mačva-Srem and area from Jošanička Banja to Vranjska Banja (southern Serbia). Based on chemical analyses, four hydrochemical facies are distinguished. Thermal water mainly belongs to NaHCO3 or CaMgHCO3 hydrochemical facies, usually depending on the primary aquifer: karst, karst-fissured, intergranular or fissured.


2015 ◽  
Vol 3 (1) ◽  
pp. 13-17 ◽  
Author(s):  
L. Rybach

<p><strong>Abstract.</strong> When considering and reporting resources, the term "geothermal potential" is often used without clearly stating what kind of potential is meant. For renewable energy resources it is nowadays common to use different potentials: theoretical, technical, economic, sustainable, developable – decreasing successively in size. In such a sequence, the potentials are progressively realizable and more and more rewarding financially. The theoretical potential describes the physically present energy, the technical potential the fraction of this energy that can be used by currently available technology and the economic potential the time- and location-dependent fraction of the previous category; the sustainable potential constrains the fraction of the economic potential that can be utilized in the long term; the developable potential is the fraction of the economic resource which can be developed under realistic conditions. In converting theoretical to technical potential, the recovery factor (the ratio extractable heat/heat present at depth) is of key importance. An example (global geothermal resources) is given, with numerical values of the various potentials. The proposed classification could and should be used as a kind of general template for future geothermal energy resources reporting.</p>


2021 ◽  
Vol 11 (6) ◽  
pp. 2691
Author(s):  
Nataša Ćuković Ignjatović ◽  
Ana Vranješ ◽  
Dušan Ignjatović ◽  
Dejan Milenić ◽  
Olivera Krunić

The study presented in this paper assessed the multidisciplinary approach of geothermal potential in the area of the most southeastern part of the Pannonian basin, focused on resources utilization. This study aims to present a method for the cascade use of geothermal energy as a source of thermal energy for space heating and cooling and as a resource for balneological purposes. Two particular sites were selected—one in a natural environment; the other within a small settlement. Geothermal resources come from different types of reservoirs having different temperatures and chemical compositions. At the first site, a geothermal spring with a temperature of 20.5 °C is considered for heat pump utilization, while at the second site, a geothermal well with a temperature of 54 °C is suitable for direct use. The calculated thermal power, which can be obtained from geothermal energy is in the range of 300 to 950 kW. The development concept was proposed with an architectural design to enable sustainable energy efficient development of wellness and spa/medical facilities that can be supported by local authorities. The resulting energy heating needs for different scenarios were 16–105 kW, which can be met in full by the use of geothermal energy.


2019 ◽  
Vol 11 (20) ◽  
pp. 2403 ◽  
Author(s):  
Lago González ◽  
Rodríguez-Gonzálvez

The transition towards a new sustainable energy model—replacing fossil fuels with renewable sources—presents a multidisciplinary challenge. One of the major decarbonization issues is the question of to optimize energy transport networks for renewable energy sources. Within the range of renewable energies, the location and evaluation of geothermal energy is associated with costly processes, such as drilling, which limit its use. Therefore, the present research is aimed at applying different geomatic techniques for the detection of geothermal resources. The workflow is based on free/open access geospatial data. More specifically, remote sensing information (Sentinel-2A and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)), geological information, distribution of gravimetric anomalies, and geographic information systems have been used to detect areas of shallow geothermal potential in the northwest of the province of Orense, Spain. Due to the variety of parameters involved, and the complexity of the classification, a random forest classifier was employed, since this algorithm works well with large sets of data and can be used with categorical and numerical data. The results obtained allowed identifying a susceptible area to be operated on with a geothermal potential of 80 W·m−1 or higher.


2011 ◽  
Vol 25 (15) ◽  
pp. 1993-2007
Author(s):  
PAVOL KALINAY ◽  
LADISLAV ŠAMAJ ◽  
IGOR TRAVĚNEC

We study the survival probability of a particle diffusing in a two-dimensional domain, bounded by a smooth absorbing boundary. The short-time expansion of this quantity depends on the geometric characteristics of the boundary, whilst its long-time asymptotics is governed by the lowest eigenvalue of the Dirichlet Laplacian defined on the domain. We present a simple algorithm for calculation of the short-time expansion for an arbitrary "star-shaped" domain. The coefficients are expressed in terms of powers of boundary curvature, integrated around the circumference of the domain. Based on this expansion, we look for a Padé interpolation between the short-time and the long-time behavior of the survival probability, i.e., between geometric characteristics of the boundary and the lowest eigenvalue of the Dirichlet Laplacian.


2013 ◽  
Vol 6 ◽  
pp. 1-9 ◽  
Author(s):  
Ashok Kumar Shrestha ◽  
Nawa Raj Dahal ◽  
Vedaste Ndungutse

Soybeans in its natural form have a little direct use as a food due to its poor digestibility as well as beany taste and flavour. Fermentation; however, can improve the eating and nutritional qualities of soybeans. Fermented soybean foods have been an intricate part of oriental diet for a long time. Bacillus subtilis dominated traditionally fermented soyfoods have typical taste, texture and aroma which is popular in Asian and African countries. B. subtilis fermentation of soaked and cooked soybeans brings many physico-chemicals and sensory changes that make it highly digestible and nutritious. This paper reviews various facets of B. subtilis fermented traditional foods, properties of fermenting organisms, preparation of such fermented foods, changes in chemical composition and nutritional properties and improving the quality of these foods. J. Food Sci. Technol. Nepal, Vol. 6 (1-9), 2010 DOI: http://dx.doi.org/10.3126/jfstn.v6i0.8252


Sign in / Sign up

Export Citation Format

Share Document