scholarly journals How to build a dinosaur: Musculoskeletal modeling and simulation of locomotor biomechanics in extinct animals

Paleobiology ◽  
2020 ◽  
pp. 1-38
Author(s):  
Peter J. Bishop ◽  
Andrew R. Cuff ◽  
John R. Hutchinson

Abstract The intersection of paleontology and biomechanics can be reciprocally illuminating, helping to improve paleobiological knowledge of extinct species and furthering our understanding of the generality of biomechanical principles derived from study of extant species. However, working with data gleaned primarily from the fossil record has its challenges. Building on decades of prior research, we outline and critically discuss a complete workflow for biomechanical analysis of extinct species, using locomotor biomechanics in the Triassic theropod dinosaur Coelophysis as a case study. We progress from the digital capture of fossil bone morphology to creating rigged skeletal models, to reconstructing musculature and soft tissue volumes, to the development of computational musculoskeletal models, and finally to the execution of biomechanical simulations. Using a three-dimensional musculoskeletal model comprising 33 muscles, a static inverse simulation of the mid-stance of running shows that Coelophysis probably used more upright (extended) hindlimb postures and was likely capable of withstanding a vertical ground reaction force of magnitude more than 2.5 times body weight. We identify muscle force-generating capacity as a key source of uncertainty in the simulations, highlighting the need for more refined methods of estimating intrinsic muscle parameters such as fiber length. Our approach emphasizes the explicit application of quantitative techniques and physics-based principles, which helps maximize results robustness and reproducibility. Although we focus on one specific taxon and question, many of the techniques and philosophies explored here have much generality to them, so they can be applied in biomechanical investigation of other extinct organisms.

Kinesiology ◽  
2018 ◽  
Vol 50 (2) ◽  
pp. 172-180 ◽  
Author(s):  
Milan Čoh ◽  
Kim Hébert-Losier ◽  
Stanko Štuhec ◽  
Vesna Babić ◽  
Matej Supej

This study investigated the maximal sprint velocity kinematics of the fastest 100 m sprinter, Usain Bolt. Two high-speed video cameras recorded kinematics from 60 to 90 m during the men 100 m final at the IAAF World Challenge Zagreb 2011, Croatia. Despite a relatively slow reaction time (194 ms), Bolt won in 9.85 s (mean velocity: 10.15 m/s). His fastest 20-m section velocity was 12.14 m/s, reached between 70 and 90 m, by 2.70-m long strides and 4.36 strides/s frequency. At the maximal velocity, his contact and flight times were 86 and 145 ms, respectively, and vertical ground reaction force generated equalled 4.2 times his body weight (3932 N). The braking and propulsion phase represented 37% and 63% of ground contact, respectively, with his centre of mass (CoM) exhibiting minor reductions in horizontal velocity (2.7%) and minimal vertical displacement (4.9 cm). Emerged Bolt’s maximal sprint velocity and international predominance from coordinated motor abilities, power generation capacities, and effective technique. This study confirms that his maximal velocity was achieved by means of relatively long strides, minimal braking phase, high vertical ground reaction force, and minimal vertical displacement of CoM. This study is the first in-depth biomechanical analysis of Bolt’s maximal sprinting velocity with the segmental reconstruction.


2015 ◽  
Vol 49 (4) ◽  
pp. 173-181
Author(s):  
KA Thiagarajan ◽  
Tvisha Parikh ◽  
Anees Sayed ◽  
MB Gnanavel ◽  
S Arumugam

ABSTRACT Cricket fast bowling action involves complex three-dimensional (3D) motion of the body and poses a high risk of injury more so in schoolboys. It is not known how the bowling technique varies between skilled and less skilled fast bowlers. The aim of this study is to compare the differences in bowling technique between young sub-elite (skilled) and amateur university level cricketers. Twelve players, 6 skilled and six amateur, were attached with 35 retro-reflective markers using the full body Plug-in-Gait marker set and asked to bowl 6 deliveries at a good length. Their bowling action was captured with 12 Vicon 3D cameras and the ground reaction force was measured using AMTI force plates. The best delivery from each bowler was selected. Their bowling action types were classified and parameters like shoulder counter rotation (scr), pelvicshoulder separation angle at back foot contact, trunk lateral flexion, front knee angle, front foot vertical ground reaction force (vGRF) and ball release speed were measured. The results were analyzed with Levene's test for Equality of Variances and a t-test for equality of means. The skilled bowlers showed faster ball release speed and experienced larger vGRF while the other parameters did not show any significant differences. How to cite this article Thiagarajan KA, Parikh T, Sayed A, Gnanavel MB, Arumugam S. Cricket Biomechanics Analysis of Skilled and Amateur Fast Bowling Techniques. J Postgrad Med Edu Res 2015;49(4):173-181.


2020 ◽  
pp. 1-12
Author(s):  
Landon B. Lempke ◽  
Jeonghoon Oh ◽  
Rachel S. Johnson ◽  
Julianne D. Schmidt ◽  
Robert C. Lynall

Context: Laboratory-based movement assessments are commonly performed without cognitive stimuli (ie, single-task) despite the simultaneous cognitive processing and movement (ie, dual task) demands required during sport. Cognitive loading may critically alter human movement and be an important consideration for truly assessing functional movement and understanding injury risk in the laboratory, but limited investigations exist. Objective: To comprehensively examine and compare kinematics and kinetics between single- and dual-task functional movement among healthy participants while controlling for sex. Design: Cross-sectional study. Setting: Laboratory. Patients (or Other Participants): Forty-one healthy, physically active participants (49% female; 22.5 ± 2.1 y; 172.5 ± 11.9 cm; 71.0 ± 13.7 kg) enrolled in and completed the study. Intervention(s): All participants completed the functional movement protocol under single- and dual-task (subtracting by 6s or 7s) conditions in a randomized order. Participants jumped forward from a 30-cm tall box and performed (1) maximum vertical jump landings and (2) dominant and (3) nondominant leg, single-leg 45° cuts after landing. Main Outcome Measures: The authors used mixed-model analysis of variances (α = .05) to compare peak hip, knee, and ankle joint angles (degrees) and moments (N·m/BW) in the sagittal and frontal planes, and peak vertical ground reaction force (N/BW) and vertical impulse (Ns/BW) between cognitive conditions and sex. Results: Dual-task resulted in greater peak vertical ground reaction force compared with single-task during jump landing (mean difference = 0.06 N/BW; 95% confidence interval [CI], 0.01 to 0.12; P = .025) but less force during dominant leg cutting (mean difference = −0.08 N/BW; 95% CI, −0.14 to −0.02; P = .015). Less hip-flexion torque occurred during dual task than single task (mean difference = −0.09 N/BW; 95% CI, −0.17 to −0.02). No other outcomes were different between single and dual task (P ≥ .053). Conclusions: Slight, but potentially important, kinematic and kinetic differences were observed between single- and dual-task that may have implications for functional movement assessments and injury risk research. More research examining how various cognitive and movement tasks interact to alter functional movement among pathological populations is warranted before clinical implementation.


2000 ◽  
Vol 16 (2) ◽  
pp. 210-218 ◽  
Author(s):  
Dorsey S. Williams ◽  
Irene S. McClay ◽  
Kurt T. Manal

Runners are sometimes advised to alter their strike pattern as a means of increasing performance or in response to injury. The purpose of this study was to compare lower extremity mechanics of rearfoot strikers (RFS), who were instructed to run with a forefoot strike pattern (CFFS) to those of a preferred forefoot striker (FFS). Three-dimensional mechanics of 9 FFS and 9 CFFS were evaluated. Peak values for most kinematic and kinetic variables and all patterns of movement were not found to be statistically different between CFFS and FFS. Only peak vertical ground reaction force and peak ankle plantarflexion moment were found to be significantly lower (p ≤ .05) in the CFFS group. This suggests that RFS are able to assume a FFS pattern with very little practice that is very similar to that of a preferred FFS. The impact of changing one's strike pattern on injury risk and running performance needs further study.


2021 ◽  
Author(s):  
Russell T. Johnson ◽  
Matthew C. O'Neill ◽  
Brian R. Umberger

Humans walk with an upright posture on extended limbs during stance and with a double-peaked vertical ground reaction force. Our closest living relatives, chimpanzees, are facultative bipeds that walk with a crouched posture on flexed, abducted hind limbs and with a single-peaked vertical ground reaction force. Differences in human and bipedal chimpanzee three-dimensional kinematics have been well quantified; however, it is unclear what the independent effects of using a crouched posture are on three-dimensional gait mechanics for humans, and how they compare with chimpanzees. Understanding the relationships between posture and gait mechanics, with known differences in morphology between species, can help researchers better interpret the effects of trait evolution on bipedal walking. We quantified pelvis and lower limb three-dimensional kinematics and ground reaction forces as humans adopted a series of upright and crouched postures and compared them with data from bipedal chimpanzee walking. Human crouched posture gait mechanics were more similar to bipedal chimpanzee gait than normal human walking, especially in sagittal plane hip and knee angles. However, there were persistent differences between species, as humans walked with less transverse plane pelvis rotation, less hip abduction, and greater peak horizontal ground reaction force in late stance than chimpanzees. Our results suggest that human crouched posture walking reproduces only a small subset of the characteristics of three-dimensional kinematics and ground reaction forces of chimpanzee walking, with the remaining differences likely due in large part to the distinct musculoskeletal morphologies of humans and chimpanzees.


2019 ◽  
Vol 126 (5) ◽  
pp. 1315-1325 ◽  
Author(s):  
Andrew B. Udofa ◽  
Kenneth P. Clark ◽  
Laurence J. Ryan ◽  
Peter G. Weyand

Although running shoes alter foot-ground reaction forces, particularly during impact, how they do so is incompletely understood. Here, we hypothesized that footwear effects on running ground reaction force-time patterns can be accurately predicted from the motion of two components of the body’s mass (mb): the contacting lower-limb (m1 = 0.08mb) and the remainder (m2 = 0.92mb). Simultaneous motion and vertical ground reaction force-time data were acquired at 1,000 Hz from eight uninstructed subjects running on a force-instrumented treadmill at 4.0 and 7.0 m/s under four footwear conditions: barefoot, minimal sole, thin sole, and thick sole. Vertical ground reaction force-time patterns were generated from the two-mass model using body mass and footfall-specific measures of contact time, aerial time, and lower-limb impact deceleration. Model force-time patterns generated using the empirical inputs acquired for each footfall matched the measured patterns closely across the four footwear conditions at both protocol speeds ( r2 = 0.96 ± 0.004; root mean squared error  = 0.17 ± 0.01 body-weight units; n = 275 total footfalls). Foot landing angles (θF) were inversely related to footwear thickness; more positive or plantar-flexed landing angles coincided with longer-impact durations and force-time patterns lacking distinct rising-edge force peaks. Our results support three conclusions: 1) running ground reaction force-time patterns across footwear conditions can be accurately predicted using our two-mass, two-impulse model, 2) impact forces, regardless of foot strike mechanics, can be accurately quantified from lower-limb motion and a fixed anatomical mass (0.08mb), and 3) runners maintain similar loading rates (ΔFvertical/Δtime) across footwear conditions by altering foot strike angle to regulate the duration of impact. NEW & NOTEWORTHY Here, we validate a two-mass, two-impulse model of running vertical ground reaction forces across four footwear thickness conditions (barefoot, minimal, thin, thick). Our model allows the impact portion of the impulse to be extracted from measured total ground reaction force-time patterns using motion data from the ankle. The gait adjustments observed across footwear conditions revealed that runners maintained similar loading rates across footwear conditions by altering foot strike angles to regulate the duration of impact.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 957 ◽  
Author(s):  
Anas M. Tahir ◽  
Muhammad E. H. Chowdhury ◽  
Amith Khandakar ◽  
Sara Al-Hamouz ◽  
Merna Abdalla ◽  
...  

Gait analysis is a systematic study of human locomotion, which can be utilized in various applications, such as rehabilitation, clinical diagnostics and sports activities. The various limitations such as cost, non-portability, long setup time, post-processing time etc., of the current gait analysis techniques have made them unfeasible for individual use. This led to an increase in research interest in developing smart insoles where wearable sensors can be employed to detect vertical ground reaction forces (vGRF) and other gait variables. Smart insoles are flexible, portable and comfortable for gait analysis, and can monitor plantar pressure frequently through embedded sensors that convert the applied pressure to an electrical signal that can be displayed and analyzed further. Several research teams are still working to improve the insoles’ features such as size, sensitivity of insoles sensors, durability, and the intelligence of insoles to monitor and control subjects’ gait by detecting various complications providing recommendation to enhance walking performance. Even though systematic sensor calibration approaches have been followed by different teams to calibrate insoles’ sensor, expensive calibration devices were used for calibration such as universal testing machines or infrared motion capture cameras equipped in motion analysis labs. This paper provides a systematic design and characterization procedure for three different pressure sensors: force-sensitive resistors (FSRs), ceramic piezoelectric sensors, and flexible piezoelectric sensors that can be used for detecting vGRF using a smart insole. A simple calibration method based on a load cell is presented as an alternative to the expensive calibration techniques. In addition, to evaluate the performance of the different sensors as a component for the smart insole, the acquired vGRF from different insoles were used to compare them. The results showed that the FSR is the most effective sensor among the three sensors for smart insole applications, whereas the piezoelectric sensors can be utilized in detecting the start and end of the gait cycle. This study will be useful for any research group in replicating the design of a customized smart insole for gait analysis.


Sign in / Sign up

Export Citation Format

Share Document