scholarly journals Hydrographic shifts south of Australia over the last deglaciation and possible interhemispheric linkages

2021 ◽  
pp. 1-12
Author(s):  
Matthias Moros ◽  
Patrick De Deckker ◽  
Kerstin Perner ◽  
Ulysses S. Ninnemann ◽  
Lukas Wacker ◽  
...  

Abstract Northern and southern hemispheric influences—particularly changes in Southern Hemisphere westerly winds (SSW) and Southern Ocean ventilation—triggered the stepwise atmospheric CO2 increase that accompanied the last deglaciation. One approach for gaining potential insights into past changes in SWW/CO2 upwelling is to reconstruct the positions of the northern oceanic fronts associated with the Antarctic Circumpolar Current. Using two deep-sea cores located ~600 km apart off the southern coast of Australia, we detail oceanic changes from ~23 to 6 ka using foraminifer faunal and biomarker alkenone records. Our results indicate a tight coupling between hydrographic and related frontal displacements offshore South Australia (and by analogy, possibly the entire Southern Ocean) and Northern Hemisphere (NH) climate that may help confirm previous hypotheses that the westerlies play a critical role in modulating CO2 uptake and release from the Southern Ocean on millennial and potentially even centennial timescales. The intensity and extent of the northward displacements of the Subtropical Front following well-known NH cold events seem to decrease with progressing NH ice sheet deglaciation and parallel a weakening NH temperature response and amplitude of Intertropical Convergence Zone shifts. In addition, an exceptional poleward shift of Southern Hemisphere fronts occurs during the NH Heinrich Stadial 1. This event was likely facilitated by the NH ice maximum and acted as a coup-de-grâce for glacial ocean stratification and its high CO2 capacitance. Thus, through its influence on the global atmosphere and on ocean mixing, “excessive” NH glaciation could have triggered its own demise by facilitating the destratification of the glacial ocean CO2 state.

Geosciences ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 266
Author(s):  
Wei Liu ◽  
Zhengyu Liu ◽  
Shouwei Li

We explore the change in Southern Ocean upwelling during the last deglaciation, based on proxy records and a transient climate model simulation. Our analyses suggest that, beyond a conventional mechanism of the Southern Hemisphere westerlies shift, Southern Ocean upwelling is strongly influenced by surface buoyancy forcing and the local topography. Over the Antarctic Circumpolar Current region, the zonal mean and local upwelled flows exhibited distinct evolution patterns during the last deglaciation, since they are driven by different mechanisms. The zonal mean upwelling is primarily driven by surface wind stress via zonal mean Ekman pumping, whereas local upwelling is driven by both wind and buoyancy forcing, and is tightly coupled to local topography. During the early stage of the last deglaciation, the vertical extension of the upwelled flows increased downstream of submarine ridges but decreased upstream, which led to enhanced and diminished local upwelling, downstream and upstream of the submarine ridges, respectively.


Geology ◽  
2013 ◽  
Vol 41 (8) ◽  
pp. 831-834 ◽  
Author(s):  
C. Mayr ◽  
A. Lücke ◽  
S. Wagner ◽  
H. Wissel ◽  
C. Ohlendorf ◽  
...  

2013 ◽  
Vol 28 (4) ◽  
pp. 619-632 ◽  
Author(s):  
Yiming V. Wang ◽  
Guillaume Leduc ◽  
Marcus Regenberg ◽  
Nils Andersen ◽  
Thomas Larsen ◽  
...  

1998 ◽  
Vol 152 (1-3) ◽  
pp. 177-188 ◽  
Author(s):  
D Klitgaard-Kristensen ◽  
T.L Rasmussen ◽  
H.P Sejrup ◽  
H Haflidason ◽  
Tj.C.E van Weering

2020 ◽  
Vol 6 (42) ◽  
pp. eabb3807
Author(s):  
Tao Li ◽  
Laura F. Robinson ◽  
Tianyu Chen ◽  
Xingchen T. Wang ◽  
Andrea Burke ◽  
...  

The Southern Ocean plays a crucial role in regulating atmospheric CO2 on centennial to millennial time scales. However, observations of sufficient resolution to explore this have been lacking. Here, we report high-resolution, multiproxy records based on precisely dated deep-sea corals from the Southern Ocean. Paired deep (∆14C and δ11B) and surface (δ15N) proxy data point to enhanced upwelling coupled with reduced efficiency of the biological pump at 14.6 and 11.7 thousand years (ka) ago, which would have facilitated rapid carbon release to the atmosphere. Transient periods of unusually well-ventilated waters in the deep Southern Ocean occurred at 16.3 and 12.8 ka ago. Contemporaneous atmospheric carbon records indicate that these Southern Ocean ventilation events are also important in releasing respired carbon from the deep ocean to the atmosphere. Our results thus highlight two distinct modes of Southern Ocean circulation and biogeochemistry associated with centennial-scale atmospheric CO2 jumps during the last deglaciation.


Geology ◽  
2021 ◽  
Author(s):  
J.L. Bernal-Wormull ◽  
A. Moreno ◽  
C. Pérez-Mejías ◽  
M. Bartolomé ◽  
A. Aranburu ◽  
...  

Major disruptions in the North Atlantic circulation during the last deglaciation triggered a series of climate feedbacks that influenced the course of Termination I, suggesting an almost synchronous response in the ocean-atmosphere system. We present a replicated δ18O stalagmite record from Ostolo cave in the northern Iberian Peninsula with a robust chronological framework that continuously covers the last deglaciation (18.5–10.5 kyr B.P.). The Ostolo δ18O record, unlike other speleothem records in the region that were related to humidity changes, closely tracks the well-known high-latitude temperature evolution, offering important insights into the structure of the last deglaciation in the Northern Hemisphere. In addition, this new record is accompanied by a clear signal of the expected cooling events associated with the deglacial disruptions in North Atlantic deep convection during Heinrich event 1.


Nature ◽  
2013 ◽  
Vol 494 (7435) ◽  
pp. 81-85 ◽  
Author(s):  
Feng He ◽  
Jeremy D. Shakun ◽  
Peter U. Clark ◽  
Anders E. Carlson ◽  
Zhengyu Liu ◽  
...  

2010 ◽  
Vol 23 (19) ◽  
pp. 5332-5343 ◽  
Author(s):  
Paul Spence ◽  
John C. Fyfe ◽  
Alvaro Montenegro ◽  
Andrew J. Weaver

Abstract A global climate model with horizontal resolutions in the ocean ranging from relatively coarse to eddy permitting is used to investigate the resolution dependence of the Southern Ocean response to poleward intensifying winds through the past and present centuries. The higher-resolution simulations show poleward migration of distinct ocean fronts associated with a more highly localized near-surface temperature response than in the lower-resolution simulations. The higher-resolution simulations also show increasing southward eddy heat transport, less high-latitude cooling, and greater sea ice loss than the lower-resolution simulations. For all resolutions, from relatively coarse to eddy permitting, there is poleward migration of the Antarctic Circumpolar Current in the Atlantic and the western half of the Indian basin. Finally, zonal transports associated with the Antarctic Circumpolar Current are shown to be sensitive to resolution, and this is discussed in the context of recent observed change.


2019 ◽  
Vol 34 (12) ◽  
pp. 2158-2170 ◽  
Author(s):  
Jessica L. Hinojosa ◽  
Christopher M. Moy ◽  
Marcus Vandergoes ◽  
Sarah J. Feakins ◽  
Alex L. Sessions

Sign in / Sign up

Export Citation Format

Share Document