Computer model for numerical simulation of emergency evacuation of transport aeroplanes

2010 ◽  
Vol 114 (1162) ◽  
pp. 737-746 ◽  
Author(s):  
J. M. Hedo ◽  
R. Martínez-Val

Abstract The present paper describes a new, agent-based computer model that can simulate the evacuation of narrow body transport aeroplanes in the conditions prescribed by the airworthiness regulations for certification. The input data are extracted from a complete plan view of the cabin. The results include full egress details of all occupants, passengers and crew-members, and the most significant evacuation figures and diagrams. The model has been tuned and verified with real data of narrow body certification demonstrations. Numerical simulations of six narrow body aircraft, representative of current designs, show the capabilities of the model and provide relevant information on the relationship between cabin features and emergency evacuation results. Although the computer model has been developed for helping in the certification process it would be useful too in the design of new cabins.

Author(s):  
R Martínez-Val ◽  
JM Hedo ◽  
E Pérez

This paper presents the effects of uncommon exit size and location arrangement in the emergency evacuation of transport airplanes. The analysis is carried out by means of an agent-based computer model conceived to simulate the evacuation of narrow-body aircraft as required in the certification process, as well as for design purposes. The simulation model provides full evacuation data of all occupants: escape route followed, distance to exit, time to reach the ground, etc., as well as those of the whole cabin: exit utilization patterns, evacuation histograms, chronolines and total evacuation time. The present research concentrates on the effect of uncommon exit size and location arrangements, such as large longitudinal shifting and/or suppression of some of the exits in the evacuation performance.


10.2196/25734 ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. e25734
Author(s):  
Fulian Yin ◽  
Xueying Shao ◽  
Meiqi Ji ◽  
Jianhong Wu

Background In a fast-evolving public health crisis such as the COVID-19 pandemic, multiple pieces of relevant information can be posted sequentially on a social media platform. The interval between subsequent posting times may have a different impact on the transmission and cross-propagation of the old and new information that results in a different peak value and a final size of forwarding users of the new information, depending on the content correlation and whether the new information is posted during the outbreak or quasi–steady-state phase of the old information. Objective This study aims to help in designing effective communication strategies to ensure information is delivered to the maximal number of users. Methods We developed and analyzed two classes of susceptible-forwarding-immune information propagation models with delay in transmission to describe the cross-propagation process of relevant information. A total of 28,661 retweets of typical information were posted frequently by each opinion leader related to COVID-19 with high influence (data acquisition up to February 19, 2020). The information was processed into discrete points with a frequency of 10 minutes, and the real data were fitted by the model numerical simulation. Furthermore, the influence of parameters on information dissemination and the design of a publishing strategy were analyzed. Results The current epidemic outbreak situation, epidemic prevention, and other related authoritative information cannot be timely and effectively browsed by the public. The ingenious use of information release intervals can effectively enhance the interaction between information and realize the effective diffusion of information. We parameterized our models using real data from Sina Microblog and used the parameterized models to define and evaluate mutual attractiveness indexes, and we used these indexes and parameter sensitivity analyses to inform optimal strategies for new information to be effectively propagated in the microblog. The results of the parameter analysis showed that using different attractiveness indexes as the key parameters can control the information transmission with different release intervals, so it is considered as a key link in the design of an information communication strategy. At the same time, the dynamic process of information was analyzed through index evaluation. Conclusions Our model can carry out an accurate numerical simulation of information at different release intervals and achieve a dynamic evaluation of information transmission by constructing an indicator system so as to provide theoretical support and strategic suggestions for government decision making. This study optimizes information posting strategies to maximize communication efforts for delivering key public health messages to the public for better outcomes of public health emergency management.


2020 ◽  
Author(s):  
Fulian Yin ◽  
Xueying Shao ◽  
Meiqi Ji ◽  
Jianhong Wu

BACKGROUND In a fast-evolving major public health crisis such as the COVID-19 pandemic, multiple pieces of relevant information can be posted sequentially on a social media platform. The interval between subsequent posting times may have different impact on the transmission and cross-propagation of the old and new information to result in different peak value and final size of forwarding users of the new information, depending on the content correlation and whether the new information is posted during the outbreak or quasi steady-state phase of the old information. OBJECTIVE This study aimed to help in designing effective communication strategies to ensure information is delivered to the maximal number of users. METHODS We develop and analyze two classes of susceptible-forwarding-immune information propagation models with delay in transmission, to describe the cross-propagation process of relevant information. A total of 28,661 retweets of typical information which were posted extremely frequently by each opinion leader related to COVID-19 with high influence (Data-acquisition up to February 19, 2020). The information was processed into discrete points with a frequency of 10 minutes, and the real data were fitted by the model numerical simulation. Furthermore, the influence of parameters on information dissemination and the design of publishing strategy are analyzed. RESULTS The current epidemic outbreak situation and epidemic prevention and other related information overloads, leading to authoritative information can not be timely and effectively browsed by the public attention. The ingenious use of information release intervals can effectively enhance the interaction between information and realize the effective diffusion of information. We parametrize our models using real data from the Sina-Microblog and use the parameterized models to define and evaluate mutual attractiveness indices, and we use these indices and parameter sensitivity analyses to inform strategies to ensure optimal strategies for new information to be effectively propagated in the microblog. The results of parameter analysis show that different attractiveness indices as the key parameters can control the information transmission with different release intervals, so it is considered as a key link in the design of information communication strategy. At the same time, the dynamic process of information is analyzed through index evaluation. CONCLUSIONS Our model can carry out accurate numerical simulation of information at different release intervals, and achieve a dynamic evaluation of information transmission by constructing an indicator system, so as to provide theoretical support and strategic suggestions for government decision-making. The study optimizes information posting strategies to maximize communication efforts to deliver key public health messages to the public for better outcomes of public health emergency management.


Healthcare ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 56
Author(s):  
Jiaxu Zhou ◽  
Xiaohu Jia ◽  
Junhan Jia

Staircase design is critical to the evacuation of children. Through an agent-based simulation, this study focused on the relationship between staircase design factors and evacuation efficiency in a multi-story kindergarten. A quantitative study was conducted on three critical architectural design factors: stair flight width, positional relationship, and design pattern of the juncture between the staircase and the corridor. The findings were as follows. (1) When the stair flight width ranges from 0.7 to 1.0 m, an increase in this width can improve evacuation efficiency significantly; when the width ranges from 1.1 to 1.4 m, evacuation efficiency is improved continuously, but an increase in this width range has a diminishing effect on evacuation efficiency; when the width is greater than 1.7 m, a further increase has an adverse effect on evacuation efficiency, because such a staircase space allows overtaking behaviors. (2) Under the same stair flight width conditions, evacuation efficiency is higher when the staircase and corridor are perpendicular to each other than when they are parallel, because the natural steering angle of the children was preserved during their evacuation. (3) The cut corner and rounded corner designs between the staircase and corridor improved evacuation efficiency and alleviated the congestion at bottleneck positions; the evacuation efficiency continued to rise with an increase in the cutting angle. These findings are expected to provide a useful reference for the evacuation design of kindergarten buildings and for emergency evacuation management.


1981 ◽  
Vol 13 (2) ◽  
pp. 217-224 ◽  
Author(s):  
J Ledent

This paper compares the system of equations underlying Alonso's theory of movement with that of Wilson's standard family of spatial-interaction models. It is shown that the Alonso model is equivalent to one of Wilson's four standard models depending on the assumption at the outset about which of the total outflows and/or inflows are known. This result turns out to supersede earlier findings—inconsistent only in appearance—which were derived independently by Wilson and Ledent. In addition to this, an original contribution of this paper—obtained as a byproduct of the process leading to the aforementioned result—is to provide an exact methodology permitting one to solve the Alonso model for each possible choice of the input data.


Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 208
Author(s):  
Daniel Queirós da Silva ◽  
André Silva Aguiar ◽  
Filipe Neves dos Santos ◽  
Armando Jorge Sousa ◽  
Danilo Rabino ◽  
...  

Smart and precision agriculture concepts require that the farmer measures all relevant variables in a continuous way and processes this information in order to build better prescription maps and to predict crop yield. These maps feed machinery with variable rate technology to apply the correct amount of products in the right time and place, to improve farm profitability. One of the most relevant information to estimate the farm yield is the Leaf Area Index. Traditionally, this index can be obtained from manual measurements or from aerial imagery: the former is time consuming and the latter requires the use of drones or aerial services. This work presents an optical sensing-based hardware module that can be attached to existing autonomous or guided terrestrial vehicles. During the normal operation, the module collects periodic geo-referenced monocular images and laser data. With that data a suggested processing pipeline, based on open-source software and composed by Structure from Motion, Multi-View Stereo and point cloud registration stages, can extract Leaf Area Index and other crop-related features. Additionally, in this work, a benchmark of software tools is made. The hardware module and pipeline were validated considering real data acquired in two vineyards—Portugal and Italy. A dataset with sensory data collected by the module was made publicly available. Results demonstrated that: the system provides reliable and precise data on the surrounding environment and the pipeline is capable of computing volume and occupancy area from the acquired data.


Safety ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 47
Author(s):  
Wattana Chanthakhot ◽  
Kasin Ransikarbum

Emergency events in the industrial sector have been increasingly reported during the past decade. However, studies that focus on emergency evacuation to improve industrial safety are still scarce. Existing evacuation-related studies also lack a perspective of fire assembly point’s analysis. In this research, location of assembly points is analyzed using the multi-criteria decision analysis (MCDA) technique based on the integrated information entropy weight (IEW) and techniques for order preference by similarity to ideal solution (TOPSIS) to support the fire evacuation plan. Next, we propose a novel simulation model that integrates fire dynamics simulation coupled with agent-based evacuation simulation to evaluate the impact of smoke and visibility from fire on evacuee behavior. Factors related to agent and building characteristics are examined for fire perception of evacuees, evacuees with physical disabilities, escape door width, fire location, and occupancy density. Then, the proposed model is applied to a case study of a home appliance factory in Chachoengsao, Thailand. Finally, results for the total evacuation time and the number of remaining occupants are statistically examined to suggest proper evacuation planning.


2021 ◽  
Vol 28 (1) ◽  
pp. 53-75 ◽  
Author(s):  
Penny Spikins ◽  
Jennifer C. French ◽  
Seren John-Wood ◽  
Calvin Dytham

AbstractArchaeological evidence suggests that important shifts were taking place in the character of human social behaviours 300,000 to 30,000 years ago. New artefact types appear and are disseminated with greater frequency. Transfers of both raw materials and finished artefacts take place over increasing distances, implying larger scales of regional mobility and more frequent and friendlier interactions between different communities. Whilst these changes occur during a period of increasing environmental variability, the relationship between ecological changes and transformations in social behaviours is elusive. Here, we explore a possible theoretical approach and methodology for understanding how ecological contexts can influence selection pressures acting on intergroup social behaviours. We focus on the relative advantages and disadvantages of intergroup tolerance in different ecological contexts using agent-based modelling (ABM). We assess the relative costs and benefits of different ‘tolerance’ levels in between-group interactions on survival and resource exploitation in different environments. The results enable us to infer a potential relationship between ecological changes and proposed changes in between-group behavioural dynamics. We conclude that increasingly harsh environments may have driven changes in hormonal and emotional responses in humans leading to increasing intergroup tolerance, i.e. transformations in social behaviour associated with ‘self-domestication’. We argue that changes in intergroup tolerance is a more parsimonious explanation for the emergence of what has been seen as ‘modern human behaviour’ than changes in hard aspects of cognition or other factors such as cognitive adaptability or population size.


2000 ◽  
Vol 23 (3) ◽  
pp. 541-544 ◽  
Author(s):  
José Alexandre Felizola Diniz-Filho ◽  
Mariana Pires de Campos Telles

In the present study, we used both simulations and real data set analyses to show that, under stochastic processes of population differentiation, the concepts of spatial heterogeneity and spatial pattern overlap. In these processes, the proportion of variation among and within a population (measured by G ST and 1 - G ST, respectively) is correlated with the slope and intercept of a Mantel's test relating genetic and geographic distances. Beyond the conceptual interest, the inspection of the relationship between population heterogeneity and spatial pattern can be used to test departures from stochasticity in the study of population differentiation.


Sign in / Sign up

Export Citation Format

Share Document