The effects of milking cows three times daily

1982 ◽  
Vol 34 (2) ◽  
pp. 197-201 ◽  
Author(s):  
D. A. Poole

ABSTRACTThe experiment assessed the effects on performance from calving to the 20th week of lactation of milking cows three times daily (3 × ) compared to milking twice daily (2 × ). After 20 weeks all cows were milked 2 ×. Each treatment consisted of 18 cows and 11 heifers. The mid-calving date was 21 September 1979.Complete diets of the same composition were offered separately to each group in quantities equivalent to 1040 g/kg of their previous intake. The diet for the first 18 weeks of lactation was estimated to have an energy concentration within the range 11·0 to 11·3 MJ metabolizable energy per kg dry matter. After 18 weeks, the diet was reformulated to reduce the energy concentration to 10·3 MJ per kg dry matter. Total food intakes for the 20 weeks of treatment were 2352 kg dry matter (3 ×) and 2241 kg dry matter (2 ×). From 8 April 1980 the cows were turned out to grass to complete their lactations.During the 20 weeks the mean daily milk yields of heifers were 19·3kg (3×) and 171kg (2×) (P<005). Cow yields were 28·4 (3×) and 23·9 kg (2×) (P< 0·001) during the same period. After 3× daily milking ceased, there were some positive carry-over effects on milk yield and food intake.Lactation yields from heifers were 4881 (3 ×) and 4498 kg (2×), whilst for cows the equivalent yields were 6485 (3 ×) and 5694 kg (2 ×) (P<0·01). There were no significant differences in milk quality. At 20 weeks after calving the cows milked 3 × daily had gained less weight, but by 44 weeks from calving the weight gains were similar at 42 (3 ×) and 45 kg (2 ×).

1982 ◽  
Vol 35 (2) ◽  
pp. 263-267 ◽  
Author(s):  
M. E. Castle ◽  
J. N. Watson

ABSTRACTTwelve Ayrshire cows in a 16-week changeover design experiment were offered 8 kg hay per day together with a daily supplement of either: A, 8 kg concentrates; B, 6 kg concentrates and 4·5 to 50 kg draff/syrup mixture; or C, 4 kg concentrates and 9·0 to 10·0 kg draff/syrup mixture. The concentrate and the draff/syrup mixture had dry-matter concentrations of 872 and 385g/kg, and contained 229 and 255 g crude protein per kg dry matter respectively. Total daily intakes of dry matter were 13·77, 13·80 and 13·81 kg per cow for treatments A, B and C respectively, and were not significantly different. The mean daily milk yields for treatments B and C were 18·2 and 18·5 kg per cow respectively, and were significantly higher than the yield of 17·3 kg per cow for treatment A. The solids-not-fat and lactose concentrations in the milk, and the mean live weights, were also significantly higher for treatment C than for treatment A. Based on the differences in milk yield and composition between treatments, it was estimated that the metabolizable energy value of the draff/syrup mixture was 12·2MJ/kg dry matter. It is concluded that the draff/syrup mixture was a safe and acceptable food for dairy cows when it replaced half of the concentrate dry matter.


1983 ◽  
Vol 36 (2) ◽  
pp. 229-236 ◽  
Author(s):  
Catherine Butcher ◽  
M. J. Bryant ◽  
E. Owen ◽  
I. Leach ◽  
D. H. Machin

ABSTRACTTwenty-five Californian does were mated and given pelleted diets of either 8(LE) or 10(HE) MJ/kg dry matter (ruminant metabolizable energy values) throughout gestation and lactation. Litter sizes were adjusted to six offspring per doe. Milk yield was estimated from the weight differences of the litters before and after suckling, when the opportunity for nursing was confined to once daily. The young rabbits were allowed access to either the LE or HE diets from 18 days of age. Weaning took place at 32 days of age when four rabbits from each doe grouP × pre-weaning diet were slaughtered. Diet had no effect on litter size or birth weight, but does on the LE diet had lower live weights post partum (P < 0·05). Dry-matter consumption by the does on the LE diet was greater than for the HE diet (P < 0·05) both during gestation and lactation, but calculated metabolizable energy intakes were lower during lactation. There were no statistically significant differences between treatments for milk yield or live-weight gain to weaning and dry-matter intakes of the young at weaning, but daily live-weight gain from fostering to 18 days of age was greater for litters of does fed the HE rather than the LE diet (P < 0·05). There were no statistically significant differences between diets for carcass traits at weaning.After weaning, 32 rabbits were given either the LE or HE diet until 2 kg live weight when they were slaughtered. A post-weaning × pre-weaning diet interaction (P < 0·05) occurred for live weights of the rabbits at the start of the post-weaning trial (i.e. after a 10-day adaptation period) with LE: LE rabbits being lighter than other rabbits as a results of poor live-weight gains during the adaptation period. Live-weight gains to slaughter were greater for the pre-weaning LE diet (P < 0·05) and the post-weaning HE diet (P < 0·01), although dry-matter intakes of the HE diet were less (P < 0·05). Rabbits on the LE diet had greater empty gut weights (P < 0·05) and lighter livers (P < 0·05) at slaughter.


1990 ◽  
Vol 51 (1) ◽  
pp. 15-21 ◽  
Author(s):  
S. Crosse ◽  
J. Murphy

ABSTRACTTwo experiments were carried out in the springs of 1986 and 1987 to investigate the effect of energy concentration in complete diets on the performance of heifers and mature cows. In 1986, all animals were on trial for an 8-week indoor period. In 1987, 14 heifers were on trial for 8 weeks, four heifers were on trial for 7 weeks and six heifers were on trial for 4 weeks. Carry-over effects were compared while animals were on pasture. Two diets offered ad libitum were compared. Diet H contained 0·7 concentrates and 0·3 grass silage. Diet L contained 0·5 concentrates and 0·5 grass silage. In 1986, the concentrate portion of diet H had a higher metabolizable energy (ME) content than diet L whereas in 1987 the same concentrate mixture was used in both diets.Increasing the energy concentration of the diet from 10·66 MJ ME per kg dry matter (DM) to 11·21 MJ ME per kg DM resulted in a significant proportional increase of 0·36 in DM intake for heifers and mature cows in 1986. The proportional increase in DM intake in 1987 for heifers was 0·17. DM intake (kg DM per day) for heifers and mature cows in 1986 and for heifers in 1987 for diets H and L was 11·8, 8·7, 15·0, 11·0, 14·9, 12·7 respectively. The energy concentration of the complete diet did have a significant effect on average milk yield during the treatment period in the 1986 trial for mature cows but not for heifers in either year. Milk yields were 19·1, 17·5, 26·3, 240, 19·8, 18·9 kg/day respectively for heifers and mature cows in 1986 and for heifers only in 1987. In vivo digestibility coefficients in 1986 for energy, DM, organic matter, modified acid-detergent fibre and protein for diet H (0·708, 0·702, 0·724, 0·678, 0·671) were significantly higher than those for diet L (0·677, 0·666, 0·694, 0·653, 0·625).The total lactation yield for the heifers and mature cows was not significantly influenced by the energy concentration of the diet given in early lactation.


Author(s):  
Ni Nyoman Suryani ◽  
I Wayan Suarna ◽  
Ni Putu Sarini ◽  
I Gede Mahardika

To determine the effect of energy levels on digestible nutrient, milk production and milk quality of 7 months pregnant Bali cattle, was the purpose of this study. The study was conducted in Bali, Province of Indonesia on 12 pregnant breeding phase of pre-calving (2 months before the birth) with the parent body weight 329-340 kg/head. The treatment given is four types of Metabolizable Energy (ME) levels: 2000, 2100, 2200 and 2300/kg respectively as treatment A, B, C, and D. All ration contain 10% of crude protein. Variables measured: energy intake, digestible nutrient, milk yield, and milk quality. This research is a randomized block design. The results showed that increase energy ration until 2300 kcal ME/kg would significantly (P<0.05) increase energy intake and highest at cattle consumed ratio D is 22239.55 kcal/day. However, digestible nutrient was not affected. Milk production increased with increasing energy rations and highest (P<0.05) at cattle received treatment D is 2179.83 ml/day compared to treatment A 936.67 ml/day. Milk fat and milk lactose also highest (P<0.05) in treatment D are 8.56% and 4.76% respectively. Based on these results, it can be concluded that increase energy ration will increase energy intake, milk yield and milk fat and milk lactose of Bali cattle. 


1962 ◽  
Vol 34 (1) ◽  
pp. 162-168
Author(s):  
Aarne Mäkelä

Comparisons are made between different methods to find the peak production (maximum daily milk yield) and methods to design the average lactation curve at the ascending phase in dairy cows. It was noted that in order to determine the height and location of the maximal producing capacity of a cow in a known lactation period, it is preferable to choose the peak production as a mean of three subsequent best days. It was also noted that the usual methods for drawing the average lactation curves do not give a true picture of the height and location of the peak. The author suggests a method for determining the average lactation curve at the ascending phase by using the averages of both milk productions and times involved in reaching the peak and known fractions (e.g. 1/8, 1/4, 1/2, 3/4, and 5/4) of it. In this lactation curve the peak production is the mean of the peaks of individual cows, and the time involved in reaching it is the mean of the durations of the ascending phases of the individual cows.


Animals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 57 ◽  
Author(s):  
Frank Dunshea ◽  
Kehinde Oluboyede ◽  
Kristy DiGiacomo ◽  
Brian Leury ◽  
Jeremy Cottrell

Betaine is an organic osmolyte sourced from sugar beet that accumulates in plant cells undergoing osmotic stress. Since the accumulation of betaine lowers the energy requirements of animals and, therefore, metabolic heat production, the aim of this experiment was to investigate if betaine supplementation improved milk yield in grazing dairy cows in summer. One hundred and eighteen Friesian × Holstein cows were paired on days in milk and, within each pair, randomly allocated to a containing treatment of either 0 or 2 g/kg natural betaine in their concentrate ration for approximately 3 weeks during February/March 2015 (summer in Australia). The mean maximum February temperature was 30 °C. Cows were allocated approximately 14 kg dry matter pasture and 7.5 kg of concentrate pellets (fed in the milking shed) per cow per day and were milked through an automatic milking system three times per day. Betaine supplementation increased average daily milk yield by over 6% (22.0 vs. 23.4 kg/day, p < 0.001) with the response increasing as the study progressed as indicated by the interaction (p < 0.001) between betaine and day. Milk fat % (p = 0.87), milk protein % (p = 0.90), and milk somatic cell count (p = 0.81) were unchanged by dietary betaine. However, betaine supplementation increased milk protein yield (677 vs. 719 g/day, p < 0.001) and fat yield (874 vs. 922 g/day, p < 0.001) with responses again being more pronounced as the study progressed. In conclusion, dietary betaine supplementation increased milk and component yield during summer in grazing dairy cows.


1989 ◽  
Vol 48 (1) ◽  
pp. 149-155 ◽  
Author(s):  
S. M. Rhind ◽  
W. A. C. McKelvey ◽  
S. McMillen ◽  
R. G. Gunn ◽  
D. A. Eiston

ABSTRACTThe effect on the reproductive performance of Greyface (Border Leicester × Scottish Blackface) ewes of a low level food intake and associated loss of live weight from either 14 days before mating, or from the time of mating, until 11 to 26 days after mating, was investigated. Ewes (252) were allocated to one of three treatments with ewes within each treatment divided into two flocks (flock A: 16 ewes per treatment; flock B: 68 ewes per treatment). Ewes of treatment LL were given a ration providing proportionately 0·5 estimated metabolizable energy (ME) requirements for maintenance from 2 weeks before mating. Those of treatment HL were given a daily ration providing 1·5 estimated ME requirements for maintenance until mating and the restricted ration thereafter. Ewes of treatment HH were given the higher ration throughout the experimental period. Flock A ewes were slaughtered at 11 days post mating and flock B ewes at between 18 and 26 days post mating. Treatment differences in the ovulation rates of flock A ewes were not statistically significant but in flock B, ewes of treatment LL had a lower mean ovulation rate (1·81) than those of treatments HL (2·23) and HH (2·09) (P < 0·001). The lower ovulation rate of LL ewes relative to HL ewes in flock B was reflected in a lower mean potential lambing rate per ewe pregnant than in the HL treatment (1·58 v. 1·79; P < 0·01) and per ewe put to the ram (1·37 v. 1·65; P < 0·01). HL ewes had a slightly lower mean potential lambing rate per ewe pregnant (1·79 v. 1·97; P < 01) and per ewe put to the ram (1·65 v. 1·82; P < 0·05) than HH ewes. Ova wastage rates of LL + HL and HH ewes were 0·26 and 014 (P < 001) respectively at 24 days post mating. Values for LL and HL ewes (0·27 and 0·25 respectively) were not significantly different.Estimated mean conceptus lengths were 370, 500 and 1400 μin for LL, HL and HH ewes respectively (P < 0·05).It is concluded that low food intake before mating reduced the mean ovulation rate and low intakes after mating compromised embryo growth rate and induced a higher rate of ova wastage; this increase in the incidence of ova wastage was not significantly exacerbated by the low levels of intake prior to mating.


1997 ◽  
Vol 65 (2) ◽  
pp. 305-310 ◽  
Author(s):  
J. R. Webster ◽  
I. D. Corsor ◽  
R. P. Littlejohn ◽  
J. M. Suttie

AbstractThe growth of male red deer slows during the first winter of life before increasing again during spring. This study aimed to determine if this period of slow growth could be minimized using artificial photoperiods during autumn and winter (10 April (week 1) to 11 September (week 23), southern hemisphere). Four groups of deer (no. = 10) were housed indoors as follows. Two groups were placed on a winter solstice photoperiod (8·5 light (L): 15·5 dark (D)) and given either a natural increase in photoperiod to 11·25L: 12·75D (WSN) or held on 8·5L: 15·5D for 7 weeks followed by an abrupt increase to 11·25L: 12·75D (WSH). One group was exposed to a summer solstice photoperiod of 16L: 8D (SS) and one group exposed to a natural photoperiodic pattern (IC). A fifth group of deer (no. = 10) was maintained outside on a gravelled enclosure under natural changes in photoperiod (OC). All groups were given a diet containing 160 g protein per kg and 11·0 MJ metabolizable energy per kg dry matter (DM) ad libitum. All animals were weighed weekly and group food intake recorded daily. Metatarsal length was measured at weeks 3,17 and 22 from the start of treatments.The major differences occurred between SS and the other groups. After a period of slower growth (weeks 1 to 5, SS = 88 g/day v. 168 g/day other groups, s.e.d. 31·2, P < 0·05), SS grew more rapidly from week 10 (P < 0·01). As a result, SS was heaviest from week 17 (P < 0·05) until the end of the experiment (P < 0·01). The mean growth rate of SS animals from weeks 10 to 23 was 346 g/day compared with 173 g/day (s.e.d. 15·3; P < 0·001) for the other groups. Over the whole experiment, SS animals gained 42·3 kg live weight, compared with 31·1 kg for WSN, 26·6 kg for WSH, 25·1 kg for OC and 23·7 kg for IC (s.e.d. 2·08 kg P < 0·01). The DM intake of SS from week 9 until the end of the experiment averaged 2·04 kg DM per head per day compared with 1·48 (s.e. 0·041) kg DM per head per day for the mean of the other groups. Metatarsal length increased more in SS than the other groups (P < 0·001) between weeks 3 and 17 and was longest in SS at weeks 17 and 22 (P < 0·01). Exposure to a 16L: 8D photoperiod during winter advanced the rapid growth of red deer calves normally associated with spring and summer. This response may be used to advance slaughter dates for venison production.


1986 ◽  
Vol 43 (2) ◽  
pp. 183-194 ◽  
Author(s):  
R. J. Dewhurst ◽  
A. J. F. Webster ◽  
F. W. Wainman ◽  
P. J. S. Dewey

ABSTRACTA model has been developed to predict the true metabolizable energy (ME,) concentration in forages given to ruminants.The chemical description of forages is based on the concentrations of ash, crude protein, ether extract, sugars and α-glycans, β-glycans and lignin, volatile fatty acids and lactic acid. The model assumes complete fermentation of sugars, α-glycans and lactic acid. The extent of fermentation of β-glycans and crude protein is determined in part by rumen solid-phase outflow rate, which can itself be predicted from dry-matter intake.The model was tested using 121 graminaceous forages whose chemical composition and concentration of metabolizable energy had been measured in the Feedingstuffs Evaluation Unit at the Rowett Research Institute. The agreement between observed and predicted ME, for all classes of forage was nearly always as good as, or better than, the best prediction from single attributes of food chemistry which could only be determined retrospectively and were not consistent even within classes of forage. The model predicts a decline in ME, with increasing rumen solid-phase outflow rate which is determined mainly by the extent of fermentation of β-glycans.


Sign in / Sign up

Export Citation Format

Share Document