scholarly journals Genomics of lactation: role of nutrigenomics and nutrigenetics in the fatty acid composition of human milk

2017 ◽  
Vol 118 (3) ◽  
pp. 161-168 ◽  
Author(s):  
Elizabeth Sosa-Castillo ◽  
Maricela Rodríguez-Cruz ◽  
Carolina Moltó-Puigmartí

AbstractHuman milk covers the infant’s nutrient requirements during the first 6 months of life. The composition of human milk progressively changes during lactation and it is influenced by maternal nutritional factors. Nowadays, it is well known that nutrients have the ability to interact with genes and modulate molecular mechanisms impacting physiological functions. This has led to a growing interest among researchers in exploring nutrition at a molecular level and to the development of two fields of study: nutrigenomics, which evaluates the influence of nutrients on gene expression, and nutrigenetics, which evaluates the heterogeneous individual response to nutrients due to genetic variation. Fatty acids are one of the nutrients most studied in relation to lactation given their biologically important roles during early postnatal life. Fatty acids modulate transcription factors involved in the regulation of lipid metabolism, which in turn causes a variation in the proportion of lipids in milk. This review focuses on understanding, on the one hand, the gene transcription mechanisms activated by maternal dietary fatty acids and, on the other hand, the interaction between dietary fatty acids and genetic variation in genes involved in lipid metabolism. Both of these mechanisms affect the fatty acid composition of human milk.

2014 ◽  
Vol 116 (5) ◽  
pp. 584-595 ◽  
Author(s):  
Deiene Rodríguez-Barreto ◽  
Salvador Jerez ◽  
Juana R. Cejas ◽  
M. Virginia Martin ◽  
Nieves G. Acosta ◽  
...  

2013 ◽  
Vol 53 (2) ◽  
pp. 129 ◽  
Author(s):  
M. J. Kelly ◽  
R. K. Tume ◽  
S. Newman ◽  
J. M. Thompson

Genetic parameters were estimated for fatty acid composition of subcutaneous beef fat of 1573 animals which were the progeny of 157 sires across seven breeds grown out on pasture and then finished on either grain or grass in northern New South Wales or in central Queensland. There was genetic variation in individual fatty acids with estimates of heritability for the proportions of C14 : 0, C14 : 1c9, C16 : 0, C16 : 1c9, C18 : 0 and C18 : 1c9 fatty acids in subcutaneous beef fat of the order of 0.4 or above. Also substantial correlations between some fatty acids were observed. Genetic correlations between fatty acids and fat depth at the P8 site suggested that much of the genetic variation in fatty acid composition was related to changes in fatness. Selection for decreased fatness resulted in decreased proportions of C18 : 1c9 with concomitant increases in C18 : 0, C14 : 0 and C16 : 0. This suggested that selection for decreased fatness at a given weight will result in a decrease in the proportions of monounsaturated fatty acids in the subcutaneous fat in the carcass with a corresponding increase in the proportions of saturated fatty acids.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1972 ◽  
Author(s):  
Wesolowska ◽  
Brys ◽  
Barbarska ◽  
Strom ◽  
Szymanska-Majchrzak ◽  
...  

Human milk fat plays an essential role as the source of energy and cell function regulator; therefore, the preservation of unique human milk donors’ lipid composition is of fundamental importance. To compare the effects of high pressure processing (HPP) and holder pasteurization on lipidome, human milk was processed at 62.5 °C for 30 min and at five variants of HPP from 450 MPa to 600 MPa, respectively. Lipase activity was estimated with QuantiChrom™ assay. Fatty acid composition was determined with the gas chromatographic technique, and free fatty acids content by titration with 0.1 M KOH. The positional distribution of fatty acid in triacylglycerols was performed. The oxidative induction time was obtained from the pressure differential scanning calorimetry. Carotenoids in human milk were measured by liquid chromatography. Bile salt stimulated lipase was completely eliminated by holder pasteurization, decreased at 600 MPa, and remained intact at 200 + 400 MPa; 450 MPa. The fatty acid composition and structure of human milk fat triacylglycerols were unchanged. The lipids of human milk after holder pasteurization had the lowest content of free fatty acids and the shortest induction time compared with samples after HPP. HPP slightly changed the β-carotene and lycopene levels, whereas the lutein level was decreased by 40.0% up to 60.2%, compared with 15.8% after the holder pasteurization.


Nutrients ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2842 ◽  
Author(s):  
Linda P. Siziba ◽  
Leonie Lorenz ◽  
Bernd Stahl ◽  
Marko Mank ◽  
Tamas Marosvölgyi ◽  
...  

The lipid fraction of human milk provides the infant with the fatty acids that are necessary for optimal growth and development. The aim of this study was to investigate the fatty acid composition of human milk at three time points during lactation and its change over time using appropriate statistical methods. Human milk samples from breastfeeding mothers at 6 weeks (n = 706), 6 months (n = 483), and 12 months (n = 81 with all three time points) were analyzed. Centered log-ratio (clr) transformation was applied to the fatty acid data. Principal component analysis (PCA) and generalized linear model-based repeated measure analysis were used to assess changes over time. The total lipid content was significantly higher at 6 months (β = 0.199, p < 0.029) and 12 months of lactation (β = 0.421, p < 0.001). The constituents of C20:3n-6 and C20:3n-3 were lower at 6 months (p < 0.001). Four distinct sub-compositional fatty acid groups were only identified at 12 months of lactation. The inclusion of small fatty acids of small constituent size in the analysis resulted in a shift in the balance between fatty acid constituents. Human milk fatty acid composition during prolonged lactation is different from that of human milk during a short duration of lactation. Our findings support the hypothesis that a combination of multiple fatty acids is important in fatty acid profiling beyond the presentation of individual fatty acids. Furthermore, the high variability of small fatty acids warrants attention because a compositional analysis may show more pronounced changes.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2064 ◽  
Author(s):  
Candice Quin ◽  
Deanna L. Gibson

Human milk is the best nutritional choice for infants. However, in instances where breastfeeding is not possible, infant formulas are used as alternatives. While formula manufacturers attempt to mimic the performance of human breast milk, formula-fed babies consistently have higher incidences of infection from diarrheal diseases than those breastfed. Differences in disease susceptibility, progression and severity can be attributed, in part, to nutritional fatty acid differences between breast milk and formula. Despite advances in our understanding of breast milk properties, formulas still present major differences in their fatty acid composition when compared to human breast milk. In this review, we highlight the role of distinct types of dietary fatty acids in modulating host inflammation, both directly and through the microbiome-immune nexus. We present evidence that dietary fatty acids influence enteric disease susceptibility and therefore, altering the fatty acid composition in formula may be a potential strategy to improve infectious outcomes in formula-fed infants.


1969 ◽  
Vol 23 (2) ◽  
pp. 421-427 ◽  
Author(s):  
G. A. Garton ◽  
W. R. H. Duncan

1. Samples of subcutaneous (inguinal) and perinephric adipose tissue were obtained, at slaughter, from each of twenty male calves. Three were neonatal animals, three were 3 days old and two were fed on reconstituted milk to appetite until they weighed 100 kg. The other twelve calves were given milk until they reached 50 kg live weight; concentrates were then included in the diet until, at 60 kg live weight, six calves were slaughtered. The remaining six calves were raised to 100 kg on concentrates alone. The weight of the empty reticulo-rumen of each slaughtered calf was recorded.2. The component fatty acids of the adipose tissue triglycerides of the neonatal and 3-day-old calves were very similar; about 80% consisted of oleic acid (18:1) and palmitic acid (16:0) and the remainder comprised stearic acid (18:0), palmitoleic acid (16:1) and myristic acid (14:0), together with very small amounts of other acids which, in the glycerides of the 3-day-old calves, included some evidently of colostral origin. The perinephric glycerides of both these groups of calves were somewhat more unsaturated than were those of subcutaneous adipose tissue.3. The continued consumption of milk by the calves slaughtered at 60 kg live weight was reflected in the presence of enhanced proportions of 14:0, 18:2, 17:0 and 17:1 in the depot triglycerides and, in addition, very small amounts of branched-chain acids and trans 18:1 were detected. A similar fatty acid pattern was observed in the triglycerides of the calves which were given milk only until they were 100 kg live weight. In all these calves only limited growth of the rumen took place.4. By contrast, the calves which were raised on solid feed from 60 kg to 100 kg and in which rumen development had taken place had depot triglycerides whose fatty acid composition resembled that found in adult animals. Increased proportions of stearic acid accompanied by relatively large amounts of trans 18:1 were present, evidently as a result of the assimilation of the products of bacterial modification of dietary fatty acids in the rumen.5. Regardless of the age of the calves and the over-all fatty acid composition of their tissue triglycerides, the intramolecular disposition of the fatty acids was similar in that saturated components were present esterified mainly in positions 1 and 3, and unsaturated acids for the most part in position 2; the only major exception to this distribution pattern was in respect of trans 18:1 which, when present, was preferentially esterified to the primary alcoholic groups of the glycerol moiety as if it were a saturated acid.


Sign in / Sign up

Export Citation Format

Share Document