scholarly journals Lipid Profile, Lipase Bioactivity, and Lipophilic Antioxidant Content in High Pressure Processed Donor Human Milk

Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1972 ◽  
Author(s):  
Wesolowska ◽  
Brys ◽  
Barbarska ◽  
Strom ◽  
Szymanska-Majchrzak ◽  
...  

Human milk fat plays an essential role as the source of energy and cell function regulator; therefore, the preservation of unique human milk donors’ lipid composition is of fundamental importance. To compare the effects of high pressure processing (HPP) and holder pasteurization on lipidome, human milk was processed at 62.5 °C for 30 min and at five variants of HPP from 450 MPa to 600 MPa, respectively. Lipase activity was estimated with QuantiChrom™ assay. Fatty acid composition was determined with the gas chromatographic technique, and free fatty acids content by titration with 0.1 M KOH. The positional distribution of fatty acid in triacylglycerols was performed. The oxidative induction time was obtained from the pressure differential scanning calorimetry. Carotenoids in human milk were measured by liquid chromatography. Bile salt stimulated lipase was completely eliminated by holder pasteurization, decreased at 600 MPa, and remained intact at 200 + 400 MPa; 450 MPa. The fatty acid composition and structure of human milk fat triacylglycerols were unchanged. The lipids of human milk after holder pasteurization had the lowest content of free fatty acids and the shortest induction time compared with samples after HPP. HPP slightly changed the β-carotene and lycopene levels, whereas the lutein level was decreased by 40.0% up to 60.2%, compared with 15.8% after the holder pasteurization.

2006 ◽  
Vol 89 (3) ◽  
pp. 1004-1009 ◽  
Author(s):  
L. Wiking ◽  
J.H. Nielsen ◽  
A.-K. Båvius ◽  
A. Edvardsson ◽  
K. Svennersten-Sjaunja

2003 ◽  
Vol 90 (5) ◽  
pp. 979-986 ◽  
Author(s):  
Leon R. Mitoulas ◽  
Lyle C. Gurrin ◽  
Dorota A. Doherty ◽  
Jillian L. Sherriff ◽  
Peter E. Hartmann

Despite the importance of human milk fatty acids for infant growth and development, there are few reports describing infant intakes of individual fatty acids. We have measured volume, fat content and fatty acid composition of milk from each breast at each feed over a 24h period to determine the mean daily amounts of each fatty acid delivered to the infant from breast milk at 1, 2, 4, 6, 9 and 12 months of lactation in five women. Daily (24h) milk production was 336·60 (sem 26·21) and 414·49 (sem 28·39) ml and milk fat content was 36·06 (sem 1·37) and 34·97 (sem 1·50) g/l for left and right breasts respectively over the course of the first year of lactation. Fatty acid composition varied over the course of the day (mean CV 14·3 (sd 7·7) %), but did not follow a circadian rhythm. The proportions (g/100g total fatty acids) of fatty acids differed significantly between mothers (P<0·05) and over the first year of lactation (P<0·05). However, amounts (g) of most fatty acids delivered to the infant over 24h did not differ during the first year of lactation and only the amounts of 18:3n-3, 22:5n-3 and 22:6n-3 delivered differed between mothers (P<0·05). Mean amounts of 18:2n-6, 18:3n-3, 20:4n-6 and 22:6n-3 delivered to the infant per 24h over the first year of lactation were 2·380 (sd 0·980), 0·194 (sd 0·074), 0·093 (sd 0·031) and 0·049 (sd 0·021) g respectively. These results suggest that variation in proportions of fatty acids may not translate to variation in the amount delivered and that milk production and fat content need to be considered.


2005 ◽  
Vol 72 (4) ◽  
pp. 476-481 ◽  
Author(s):  
Lars Wiking ◽  
Hanne C Bertram ◽  
Lennart Björck ◽  
Jacob H Nielsen

Cooling strategies for pumping of raw milk were evaluated. Milk was pumped for 450 s at 31 °C, or pumped after cooling to 4 °C and subsequently subjected to various incubation times. Two types of milk were used; i.e. milk from cows fed a diet high in saturated fat supplements resulting in significantly larger milk fat globules than the other type of milk which comes from cows fed a low-fat diet that stimulates high de novo fat synthesis. The content of liquid fat was determined by low-field 1H NMR, which showed that milk from cows given the saturated fat diet also contained less liquid fat at both 4 ° and 31 °C than the other type of milk. This can be ascribed to the differences in the fatty acid composition of the milk as a result of the fatty acid composition of the diets. After pumping of the milk at 31 °C, measurement of fat globule size distribution revealed a significant coalescence of milk fat globules in the milk obtained from the saturated fat diet due to pumping. Pumping at 4 °C or pumping the other type of milk did not result in coalescence of milk fat globules. Formation of free fatty acids increased significantly in both types of milk by pumping at 31 °C. Cooling the milk to 4 °C immediately before pumping inhibited an increased content of free fatty acids. However, when the milk was incubated at 4 °C for 60 min after cooling and then subjected to pumping, a significant increase in the formation of free fatty acids was observed in both types of milk. It is suggested that this increase in free fatty acids is caused by transition of polymorphic crystal forms or higher level of attached lipoprotein lipases to the milk fat globule before pumping.


Mljekarstvo ◽  
2021 ◽  
Vol 71 (2) ◽  
pp. 124-131
Author(s):  
Naciye Ünver ◽  

In this research, Sanliurfa butterfat, collected from local small-sized dairy plants located in Karacadağ Region of Sanliurfa, were stored at two different temperatures (4 and 20 °C) for 12 months. The butterfat samples have been analysed to determine some biochemical parameters (free fatty acids, acid value, peroxide value, induction time, and pH) and fatty acid composition on the 1st, 30th, 90th, 120th, 180th, 270th and 360th days of storage. The mean value of free fatty acids, acid value and peroxide value of the butterfat stored in refrigerator conditions (4 °C) were lower, and the induction time was higher than the butterfat stored at room temperature (20 °C) (P<0.05). Furthermore, the acid value, free fatty acids value, C16:1, C17:1, C18:2n6c and MUFA of the butterfat increased significantly during the storage period (P<0.05). The ratio of saturated fatty acid of the butterfat decreased during the storage (P<0.05). According to the results of free fatty acids, traditional Sanliurfa butterfat at room temperature (20 °C) could be stored safely for a maximum of 3 months, while this period could be up to 6 months for the butterfat stored at refrigerated temperature (4 °C).


Author(s):  
D. Ivasenko ◽  
P. Bukhtiyarova ◽  
D. Antsiferov ◽  
Y. Frank

Analysis of fatty acid composition in liquid culture media after lipophilic bacterial strains cultivation was carried out. Pure cultures were earlierisolated from fat-containing wastes and cultivated on media with diverse fat sources. It was shown that microorganisms hydrolyze animal and milk fats to free fatty acids.


Nutrients ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2842 ◽  
Author(s):  
Linda P. Siziba ◽  
Leonie Lorenz ◽  
Bernd Stahl ◽  
Marko Mank ◽  
Tamas Marosvölgyi ◽  
...  

The lipid fraction of human milk provides the infant with the fatty acids that are necessary for optimal growth and development. The aim of this study was to investigate the fatty acid composition of human milk at three time points during lactation and its change over time using appropriate statistical methods. Human milk samples from breastfeeding mothers at 6 weeks (n = 706), 6 months (n = 483), and 12 months (n = 81 with all three time points) were analyzed. Centered log-ratio (clr) transformation was applied to the fatty acid data. Principal component analysis (PCA) and generalized linear model-based repeated measure analysis were used to assess changes over time. The total lipid content was significantly higher at 6 months (β = 0.199, p < 0.029) and 12 months of lactation (β = 0.421, p < 0.001). The constituents of C20:3n-6 and C20:3n-3 were lower at 6 months (p < 0.001). Four distinct sub-compositional fatty acid groups were only identified at 12 months of lactation. The inclusion of small fatty acids of small constituent size in the analysis resulted in a shift in the balance between fatty acid constituents. Human milk fatty acid composition during prolonged lactation is different from that of human milk during a short duration of lactation. Our findings support the hypothesis that a combination of multiple fatty acids is important in fatty acid profiling beyond the presentation of individual fatty acids. Furthermore, the high variability of small fatty acids warrants attention because a compositional analysis may show more pronounced changes.


2020 ◽  
Vol 8 (3) ◽  
pp. 439 ◽  
Author(s):  
Lorenzo Siroli ◽  
Giacomo Braschi ◽  
Samantha Rossi ◽  
Davide Gottardi ◽  
Francesca Patrignani ◽  
...  

Sub-lethal high-pressure homogenization treatments applied to Lactobacillus paracasei A13 demonstrated to be a useful strategy to enhance technological and functional properties without detrimental effects on the viability of this strain. Modification of membrane fatty acid composition is reported to be the main regulatory mechanisms adopted by probiotic lactobacilli to counteract high-pressure stress. This work is aimed to clarify and understand the relationship between the modification of membrane fatty acid composition and the expression of genes involved in fatty acid biosynthesis in Lactobacillus paracasei A13, before and after the application of different sub-lethal hyperbaric treatments. Our results showed that Lactobacillus paracasei A13 activated a series of reactions aimed to control and stabilize membrane fluidity in response to high-pressure homogenization treatments. In fact, the production of cyclic fatty acids was counterbalanced by the unsaturation and elongation of fatty acids. The gene expression data indicate an up-regulation of the genes accA, accC, fabD, fabH and fabZ after high-pressure homogenization treatment at 150 and 200 MPa, and of fabK and fabZ after a treatment at 200 MPa suggesting this regulation of the genes involved in fatty acids biosynthesis as an immediate response mechanism adopted by Lactobacillus paracasei A13 to high-pressure homogenization treatments to balance the membrane fluidity. Although further studies should be performed to clarify the modulation of phospholipids and glycoproteins biosynthesis since they play a crucial role in the functional properties of the probiotic strains, this study represents an important step towards understanding the response mechanisms of Lactobacillus paracasei A13 to sub-lethal high-pressure homogenization treatments.


2005 ◽  
Vol 72 (3) ◽  
pp. 349-361 ◽  
Author(s):  
Kevin J Shingfield ◽  
Pirjo Salo-Väänänen ◽  
Eero Pahkala ◽  
Vesa Toivonen ◽  
Seija Jaakkola ◽  
...  

Based on potential health benefits, there is a need to develop effective strategies for enhancing milk fat concentrations of cis-9 18[ratio ]1, 18[ratio ]3 n-3 and conjugated linoleic (CLA) content in milk without compromising the sensory or storage characteristics of processed milk or dairy products. Sixteen Finnish Ayrshire dairy cows were used in a cyclic change-over experiment with four 21-d experimental periods and a 4×2×2 factorial arrangement of treatments to evaluate the effects of forage conservation method, concentrate level and supplements of propylene glycol (PG), and their interactions on milk fatty acid composition and vitamin content. Experimental treatments consisted of four conserved forages offered ad libitum, supplemented with two levels of a standard concentrate (7 or 10 kg/d) and PG (0 and 210 g/d) fed as three equal meals. Primary growths of timothy and meadow fescue sward were conserved by ensiling with none (NA), an inoculant enzyme preparation (IE) or a formic acid based (FORM) additive or as hay 1 week later. Conservation of grass by drying rather than ensiling resulted in lower forage 18[ratio ]2n-6, 18[ratio ]3n-3, total fatty acid and fat-soluble vitamin concentrations. In spite of lower intakes, milk fat 18[ratio ]2n-6 and 18[ratio ]3n-3 content was higher (P<0·05) for hay than for silage diets (12·1, 9·6, 9·6 and 9·3 and 5·00, 3·51, 4·27 and 2·93 g/kg total fatty acids, for hay, NA, IE and FORM silages, respectively). Forage conservation method had no clear effects on milk trans 18[ratio ]1 or CLA content. Compared with silage, hay diets resulted in milk containing lower (P<0·001) riboflavin, α-tocopherol and β-carotene concentrations, but had no effect on ascorbic acid, thiamine, pyridoxine or retinol content. Feeding more concentrates had no effect on milk fatty acid composition or milk vitamin content, other than lowering (P<0·001) 16[ratio ]0 concentrations from 348 to 338 g/kg fatty acids. Supplements of PG led to small (P<0·05) increases in milk 13[ratio ]0 anteiso and 15[ratio ]0 content from 1·06 and 11·3 to 1·22 and 12·6 g/kg fatty acids and reduced (P<0·05) the concentrations of ascorbic acid (16·1 v. 15·1 g/kg milk).


Sign in / Sign up

Export Citation Format

Share Document