scholarly journals A critical evaluation of results from genome-wide association studies of micronutrient status and their utility in the practice of precision nutrition

2019 ◽  
Vol 122 (2) ◽  
pp. 121-130 ◽  
Author(s):  
Marie-Joe Dib ◽  
Ruan Elliott ◽  
Kourosh R. Ahmadi

AbstractRapid advances in ‘omics’ technologies have paved the way forward to an era where more ‘precise’ approaches – ‘precision’ nutrition – which leverage data on genetic variability alongside the traditional indices, have been put forth as the state-of-the-art solution to redress the effects of malnutrition across the life course. We purport that this inference is premature and that it is imperative to first review and critique the existing evidence from large-scale epidemiological findings. We set out to provide a critical evaluation of findings from genome-wide association studies (GWAS) in the roadmap to precision nutrition, focusing on GWAS of micronutrient disposition. We found that a large number of loci associated with biomarkers of micronutrient status have been identified. Mean estimates of heritability of micronutrient status ranged between 20 and 35 % for minerals, 56–59 % for water-soluble and 30–70 % for fat-soluble vitamins. With some exceptions, the majority of the identified genetic variants explained little of the overall variance in status for each micronutrient, ranging between 1·3 and 8 % (minerals), <0·1–12 % (water-soluble) and 1·7–2·3 % for (fat-soluble) vitamins. However, GWAS have provided some novel insight into mechanisms that underpin variability in micronutrient status. Our findings highlight obvious gaps that need to be addressed if the full scope of precision nutrition is ever to be realised, including research aimed at (i) dissecting the genetic basis of micronutrient deficiencies or ‘response’ to intake/supplementation (ii) identifying trans-ethnic and ethnic-specific effects (iii) identifying gene–nutrient interactions for the purpose of unravelling molecular ‘behaviour’ in a range of environmental contexts.

Author(s):  
Saleh Alseekh ◽  
Dimitrina Kostova ◽  
Mustafa Bulut ◽  
Alisdair R. Fernie

AbstractGWAS involves testing genetic variants across the genomes of many individuals of a population to identify genotype–phenotype association. It was initially developed and has proven highly successful in human disease genetics. In plants genome-wide association studies (GWAS) initially focused on single feature polymorphism and recombination and linkage disequilibrium but has now been embraced by a plethora of different disciplines with several thousand studies being published in model and crop species within the last decade or so. Here we will provide a comprehensive review of these studies providing cases studies on biotic resistance, abiotic tolerance, yield associated traits, and metabolic composition. We also detail current strategies of candidate gene validation as well as the functional study of haplotypes. Furthermore, we provide a critical evaluation of the GWAS strategy and its alternatives as well as future perspectives that are emerging with the emergence of pan-genomic datasets.


2018 ◽  
Vol 35 (14) ◽  
pp. 2512-2514 ◽  
Author(s):  
Bongsong Kim ◽  
Xinbin Dai ◽  
Wenchao Zhang ◽  
Zhaohong Zhuang ◽  
Darlene L Sanchez ◽  
...  

Abstract Summary We present GWASpro, a high-performance web server for the analyses of large-scale genome-wide association studies (GWAS). GWASpro was developed to provide data analyses for large-scale molecular genetic data, coupled with complex replicated experimental designs such as found in plant science investigations and to overcome the steep learning curves of existing GWAS software tools. GWASpro supports building complex design matrices, by which complex experimental designs that may include replications, treatments, locations and times, can be accounted for in the linear mixed model. GWASpro is optimized to handle GWAS data that may consist of up to 10 million markers and 10 000 samples from replicable lines or hybrids. GWASpro provides an interface that significantly reduces the learning curve for new GWAS investigators. Availability and implementation GWASpro is freely available at https://bioinfo.noble.org/GWASPRO. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 117 (21) ◽  
pp. 11608-11613 ◽  
Author(s):  
Marcelo Blatt ◽  
Alexander Gusev ◽  
Yuriy Polyakov ◽  
Shafi Goldwasser

Genome-wide association studies (GWASs) seek to identify genetic variants associated with a trait, and have been a powerful approach for understanding complex diseases. A critical challenge for GWASs has been the dependence on individual-level data that typically have strict privacy requirements, creating an urgent need for methods that preserve the individual-level privacy of participants. Here, we present a privacy-preserving framework based on several advances in homomorphic encryption and demonstrate that it can perform an accurate GWAS analysis for a real dataset of more than 25,000 individuals, keeping all individual data encrypted and requiring no user interactions. Our extrapolations show that it can evaluate GWASs of 100,000 individuals and 500,000 single-nucleotide polymorphisms (SNPs) in 5.6 h on a single server node (or in 11 min on 31 server nodes running in parallel). Our performance results are more than one order of magnitude faster than prior state-of-the-art results using secure multiparty computation, which requires continuous user interactions, with the accuracy of both solutions being similar. Our homomorphic encryption advances can also be applied to other domains where large-scale statistical analyses over encrypted data are needed.


Author(s):  
Karani S. Vimaleswaran ◽  
Ruth J.F. Loos

The prevalence of obesity and diabetes, which are heritable traits that arise from the interactions of multiple genes and lifestyle factors, continues to rise worldwide, causing serious health problems and imposing a substantial economic burden on societies. For the past 15 years, candidate gene and genome-wide linkage studies have been the main genetic epidemiological approaches to identify genetic loci for obesity and diabetes, yet progress has been slow and success limited. The genome-wide association approach, which has become available in recent years, has dramatically changed the pace of gene discoveries. Genome-wide association is a hypothesis-generating approach that aims to identify new loci associated with the disease or trait of interest. So far, three waves of large-scale genome-wide association studies have identified 19 loci for common obesity and 18 for common type 2 diabetes. Although the combined contribution of these loci to the variation in obesity and diabetes risk is small and their predictive value is typically low, these recently identified loci are set to substantially improve our insights into the pathophysiology of obesity and diabetes. This will require integration of genetic epidemiological methods with functional genomics and proteomics. However, the use of these novel insights for genetic screening and personalised treatment lies some way off in the future.


2021 ◽  
pp. 2100199
Author(s):  
Zhaozhong Zhu ◽  
Jiachen Li ◽  
Jiahui Si ◽  
Baoshan Ma ◽  
Huwenbo Shi ◽  
...  

Lung function is a heritable complex phenotype with obesity being one of its important risk factors. However, the knowledge of their shared genetic basis is limited. Most genome-wide association studies (GWASs) for lung function have been based on European populations, limiting the generalisability across populations. Large-scale lung function GWAS in other populations are lacking.We included 100 285 subjects from China Kadoorie Biobank (CKB). To identify novel loci for lung function, single-trait GWAS were performed on FEV1, FVC, FEV1/FVC in CKB. We then performed genome-wide cross-trait analysis between the lung function and obesity traits (body mass index [BMI], BMI-adjusted waist-to-hip ratio, and BMI-adjusted waist circumference) to investigate the shared genetic effects in CKB. Finally, polygenic risk scores (PRSs) of lung function were developed in CKB and its interaction with BMI's association on lung function were examined. We also conducted cross-trait analysis in parallel with CKB using 457 756 subjects from UK Biobank (UKB) for replication and investigation of ancestry specific effect.We identified 9 genome-wide significant novel loci for FEV1, 6 for FVC and 3 for FEV1/FVC in CKB. FEV1 and FVC showed significant negative genetic correlation with obesity traits in both CKB and UKB. Genetic loci shared between lung function and obesity traits highlighted important pathways, including cell proliferation, embryo and tissue development. Mendelian randomisation analysis suggested significant negative causal effect of BMI on FEV1 and on FVC in both CKB and UKB. Lung function PRSs significantly modified the effect of change-in-BMI on change-in-lung function during an average follow-up of 8 years.This large-scale GWAS of lung function identified novel loci and shared genetic etiology between lung function and obesity. Change-in-BMI might affect change-in-lung function differently according to a subject's polygenic background. These findings may open new avenue for the development of molecular-targeted therapies for obesity and lung function improvement.


2016 ◽  
Author(s):  
Hong Gao ◽  
Hua Tang ◽  
Carlos Bustamante

With the rapid production of high dimensional genetic data, one major challenge in genome-wide association studies is to develop effective and efficient statistical tools to resolve the low power problem of detecting causal SNPs with low to moderate susceptibility, whose effects are often obscured by substantial background noises. Here we present a novel method that serves as an optimal technique for reducing background noises and improving detection power in genome-wide association studies. The approach uses hidden Markov model and its derivate Markov hidden Markov model to estimate the posterior probabilities of a markers being in an associated state. We conducted extensive simulations based on the human whole genome genotype data from the GlaxoSmithKline-POPRES project to calibrate the sensitivity and specificity of our method and compared with many popular approaches for detecting positive signals including the χ^2 test for association and the Cochran-Armitage trend test. Our simulation results suggested that at very low false positive rates (<10^-6), our method reaches the power of 0.9, and is more powerful than any other approaches, when the allelic effect of the causal variant is non-additive or unknown. Application of our method to the data set generated by Welcome Trust Case Control Consortium using 14,000 cases and 3,000 controls confirmed its powerfulness and efficiency under the context of the large-scale genome-wide association studies.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana Viñuela ◽  
Arushi Varshney ◽  
Martijn van de Bunt ◽  
Rashmi B. Prasad ◽  
Olof Asplund ◽  
...  

Abstract Most signals detected by genome-wide association studies map to non-coding sequence and their tissue-specific effects influence transcriptional regulation. However, key tissues and cell-types required for functional inference are absent from large-scale resources. Here we explore the relationship between genetic variants influencing predisposition to type 2 diabetes (T2D) and related glycemic traits, and human pancreatic islet transcription using data from 420 donors. We find: (a) 7741 cis-eQTLs in islets with a replication rate across 44 GTEx tissues between 40% and 73%; (b) marked overlap between islet cis-eQTL signals and active regulatory sequences in islets, with reduced eQTL effect size observed in the stretch enhancers most strongly implicated in GWAS signal location; (c) enrichment of islet cis-eQTL signals with T2D risk variants identified in genome-wide association studies; and (d) colocalization between 47 islet cis-eQTLs and variants influencing T2D or glycemic traits, including DGKB and TCF7L2. Our findings illustrate the advantages of performing functional and regulatory studies in disease relevant tissues.


Author(s):  
Mian Lu ◽  
Qiong Luo

Large-scale Genome-Wide Association Studies (GWAS) are a Big Data application due to the great amount of data to process and high computation intensity. Furthermore, numerical issues (e.g., floating point underflow) limit the data scale in some applications. Graphics Processors (GPUs) have been used to accelerate genomic data analytics, such as sequence alignment, single-Nucleotide Polymorphism (SNP) detection, and Minor Allele Frequency (MAF) computation. As MAF computation is the most time-consuming task in GWAS, the authors discuss in detail their techniques of accelerating this task using the GPU. They first present a reduction-based algorithm that better matches the GPU’s data-parallelism feature than the original algorithm implemented in the CPU-based tool. Then they implement this algorithm on the GPU efficiently by carefully optimizing local memory utilization and avoiding user-level synchronization. As the MAF computation suffers from floating point underflow, the authors transform the computation to logarithm space. In addition to the MAF computation, they briefly introduce the GPU-accelerated sequence alignment and SNP detection. The experimental results show that the GPU-based GWAS implementations can accelerate state-of-the-art CPU-based tools by up to an order of magnitude.


Sign in / Sign up

Export Citation Format

Share Document