Mitochondrial DNA variability and geographic origin of the sheep blowfly, Lucilia cuprina (Diptera: Calliphoridae), in New Zealand

1997 ◽  
Vol 87 (3) ◽  
pp. 265-272 ◽  
Author(s):  
D. M. Gleeson ◽  
S. Sarre

AbstractVariation in the sheep blowfly, Lucilia cuprina (Weidemann), mitochondrial DNA (mtDNA) was assessed using restriction endonucleases. Ten individuals from 13 localities throughout New Zealand and Australia were examined using 18 restriction endonucleases. Only two localities exhibited polymorphism, suggesting historical events have contributed to this low level of mitochondrial variability in L. cuprina from these regions. A 472 base pair region of the mitochondrial cytochrome oxidase I gene (COI) was sequenced from six Australasian regions and samples from South Africa and Malaysia. Phylogenetic analyses using both parsimony and neighbor-joining methods indicates possible multiple introductions of L. cuprina in New Zealand.

2007 ◽  
Vol 34 (4) ◽  
pp. 371-380 ◽  
Author(s):  
Liam Nolan ◽  
Ian D. Hogg ◽  
Darin L. Sutherland ◽  
Mark I. Stevens ◽  
Kareen E. Schnabel

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Javier Fernández-López ◽  
M. Teresa Telleria ◽  
Margarita Dueñas ◽  
Mara Laguna-Castro ◽  
Klaus Schliep ◽  
...  

AbstractThe use of different sources of evidence has been recommended in order to conduct species delimitation analyses to solve taxonomic issues. In this study, we use a maximum likelihood framework to combine morphological and molecular traits to study the case of Xylodon australis (Hymenochaetales, Basidiomycota) using the locate.yeti function from the phytools R package. Xylodon australis has been considered a single species distributed across Australia, New Zealand and Patagonia. Multi-locus phylogenetic analyses were conducted to unmask the actual diversity under X. australis as well as the kinship relations respect their relatives. To assess the taxonomic position of each clade, locate.yeti function was used to locate in a molecular phylogeny the X. australis type material for which no molecular data was available using morphological continuous traits. Two different species were distinguished under the X. australis name, one from Australia–New Zealand and other from Patagonia. In addition, a close relationship with Xylodon lenis, a species from the South East of Asia, was confirmed for the Patagonian clade. We discuss the implications of our results for the biogeographical history of this genus and we evaluate the potential of this method to be used with historical collections for which molecular data is not available.


2021 ◽  
Vol 22 (10) ◽  
pp. 5100
Author(s):  
Paulina Kozakiewicz ◽  
Ludmiła Grzybowska-Szatkowska ◽  
Marzanna Ciesielka ◽  
Jolanta Rzymowska

The mitochondria are essential for normal cell functioning. Changes in mitochondrial DNA (mtDNA) may affect the occurrence of some chronic diseases and cancer. This process is complex and not entirely understood. The assignment to a particular mitochondrial haplogroup may be a factor that either contributes to cancer development or reduces its likelihood. Mutations in mtDNA occurring via an increase in reactive oxygen species may favour the occurrence of further changes both in mitochondrial and nuclear DNA. Mitochondrial DNA mutations in postmitotic cells are not inherited, but may play a role both in initiation and progression of cancer. One of the first discovered polymorphisms associated with cancer was in the gene NADH-ubiquinone oxidoreductase chain 3 (mt-ND3) and it was typical of haplogroup N. In prostate cancer, these mutations and polymorphisms involve a gene encoding subunit I of respiratory complex IV cytochrome c oxidase subunit 1 gene (COI). At present, a growing number of studies also address the impact of mtDNA polymorphisms on prognosis in cancer patients. Some of the mitochondrial DNA polymorphisms occur in both chronic disease and cancer, for instance polymorphism G5913A characteristic of prostate cancer and hypertension.


1992 ◽  
Vol 41 (3) ◽  
pp. 384-391 ◽  
Author(s):  
M. Stoneking ◽  
S. T. Sherry ◽  
L. Vigilant

2011 ◽  
Vol 43 (13) ◽  
pp. 789-798 ◽  
Author(s):  
Nir Eynon ◽  
María Morán ◽  
Ruth Birk ◽  
Alejandro Lucia

Aerobic ATP generation by the mitochondrial respiratory oxidative phosphorylation system (OXPHOS) is a vital metabolic process for endurance exercise. Notably, mitochondrial DNA (mtDNA) codifies 13 of the 83 polypeptides implied in the respiratory chain. As such, there is a strong rationale for identifying an association between mtDNA variants and “aerobic” (endurance) exercise phenotypes. The aim of this review is to summarize current knowledge on the association between mtDNA, nuclear genes involved in mitochondriogenesis, and elite endurance athletic status. Several studies in nonathletic people have demonstrated an association between certain mtDNA lineages and aerobic performance, characterized by maximal oxygen uptake (V̇o2max). Whether mtDNA haplogroups are also associated with the status of being an elite endurance athlete is more controversial, with differences between studies arising from the different ethnic backgrounds of the athletic cohorts (Caucasian of mixed geographic origin, Asiatic, or East African).


2013 ◽  
Vol 82 (3) ◽  
pp. 856-876 ◽  
Author(s):  
D. Sanna ◽  
F. Biagi ◽  
H. B. Alaya ◽  
F. Maltagliati ◽  
A. Addis ◽  
...  

2018 ◽  
Vol 3 (4) ◽  
pp. 127 ◽  
Author(s):  
Eniola Abe ◽  
Yun-Hai Guo ◽  
Haimo Shen ◽  
Masceline Mutsaka-Makuvaza ◽  
Mohamed Habib ◽  
...  

The transmission of some schistosome parasites is dependent on the planorbid snail hosts. Bulinus truncatus is important in urinary schistosomiasis epidemiology in Africa. Hence, there is a need to define the snails’ phylogeography. This study assessed the population genetic structure of B. truncatus from Giza and Sharkia (Egypt), Barakat (Sudan) and Madziwa, Shamva District (Zimbabwe) using mitochondrial cytochrome oxidase subunit 1 gene (COI) and internal transcribed spacer 1 (ITS 1) markers. COI was sequenced from 94 B. truncatus samples including 38 (Egypt), 36 (Sudan) and 20 (Zimbabwe). However, only 51 ITS 1 sequences were identified from Egypt (28) and Sudan (23) (because of failure in either amplification or sequencing). The unique COI haplotypes of B. truncatus sequences observed were 6, 11, and 6 for Egypt, Sudan, and Zimbabwe, respectively. Also, 3 and 2 unique ITS 1 haplotypes were observed in sequences from Egypt and Sudan respectively. Mitochondrial DNA sequences from Sudan and Zimbabwe indicated high haplotype diversity with 0.768 and 0.784, respectively, while relatively low haplotype diversity was also observed for sequences from Egypt (0.334). The location of populations from Egypt and Sudan on the B. truncatus clade agrees with the location of both countries geographically. The clustering of the Zimbabwe sequences on different locations on the clade can be attributed to individuals with different genotypes within the population. No significant variation was observed within B. truncatus populations from Egypt and Sudan as indicated by the ITS 1 tree. This study investigated the genetic diversity of B. truncatus from Giza and Sharkia (Egypt), Barakat area (Sudan), and Madziwa (Zimbabwe), which is necessary for snail host surveillance in the study areas and also provided genomic data of this important snail species from the sampled countries.


Sign in / Sign up

Export Citation Format

Share Document