Precocious sexual signalling and mating in Anastrepha fraterculus (Diptera: Tephritidae) sterile males achieved through juvenile hormone treatment and protein supplements

2012 ◽  
Vol 103 (1) ◽  
pp. 1-13 ◽  
Author(s):  
M.C. Liendo ◽  
F. Devescovi ◽  
G.E. Bachmann ◽  
M.E. Utgés ◽  
S. Abraham ◽  
...  

AbstractSexual maturation of Anastrepha fraterculus is a long process. Methoprene (a mimic of juvenile hormone) considerably reduces the time for sexual maturation in males. However, in other Anastrepha species, this effect depends on protein intake at the adult stage. Here, we evaluated the mating competitiveness of sterile laboratory males and females that were treated with methoprene (either the pupal or adult stage) and were kept under different regimes of adult food, which varied in the protein source and the sugar:protein ratio. Experiments were carried out under semi-natural conditions, where laboratory flies competed over copulations with sexually mature wild flies. Sterile, methoprene-treated males that reached sexual maturity earlier (six days old), displayed the same lekking behaviour, attractiveness to females and mating competitiveness as mature wild males. This effect depended on protein intake. Diets containing sugar and hydrolyzed yeast allowed sterile males to compete with wild males (even at a low concentration of protein), while brewer´s yeast failed to do so even at a higher concentration. Sugar only fed males were unable to achieve significant numbers of copulations. Methoprene did not increase the readiness to mate of six-day-old sterile females. Long pre-copulatory periods create an additional cost to the management of fruit fly pests through the sterile insect technique (SIT). Our findings suggest that methoprene treatment will increase SIT effectiveness against A. fraterculus when coupled with a diet fortified with protein. Additionally, methoprene acts as a physiological sexing method, allowing the release of mature males and immature females and hence increasing SIT efficiency.

2013 ◽  
Vol 103 (3) ◽  
pp. 310-317 ◽  
Author(s):  
S. Abraham ◽  
M.C. Liendo ◽  
F. Devescovi ◽  
P.A. Peralta ◽  
V. Yusef ◽  
...  

AbstractThe sterile insect technique (SIT) has been proposed as an area-wide method to control the South American fruit fly, Anastrepha fraterculus (Wiedemann). This technique requires sterilization, a procedure that affects, along with other factors, the ability of males to modulate female sexual receptivity after copulation. Numerous pre-release treatments have been proposed to counteract the detrimental effects of irradiation, rearing and handling and increase SIT effectiveness. These include treating newly emerged males with a juvenile hormone mimic (methoprene) or supplying protein to the male's diet to accelerate sexual maturation prior to release. Here, we examine how male irradiation, methoprene treatment and protein intake affect remating behavior and the amount of sperm stored in inseminated females. In field cage experiments, we found that irradiated laboratory males were equally able to modulate female remating behavior as fertile wild males. However, females mated with 6-day-old, methoprene-treated males remated more and sooner than females mated with naturally matured males, either sterile or wild. Protein intake by males was not sufficient to overcome reduced ability of methoprene-treated males to induce refractory periods in females as lengthy as those induced by wild and naturally matured males. The amount of sperm stored by females was not affected by male irradiation, methoprene treatment or protein intake. This finding revealed that factors in addition to sperm volume intervene in regulating female receptivity after copulation. Implications for SIT are discussed.


2011 ◽  
Vol 57 (12) ◽  
pp. 1622-1630 ◽  
Author(s):  
A. Oviedo ◽  
D. Nestel ◽  
N.T. Papadopoulos ◽  
M.J. Ruiz ◽  
S.C. Prieto ◽  
...  

1997 ◽  
Vol 26 (2) ◽  
pp. 299-308 ◽  
Author(s):  
Ivanildo S. Lima ◽  
Philip E. Howse

Locomotion and grooming in immature adult Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae) occurred throughout the daylight period. Feeding seemed to be slightly higher in mated than in unmated flies. Ovipositing females showed territoriality and only mated females laid eggs. Males started to display courtship behavior at 5 days old, reaching the complete sexual maturation at day 10. About 54% of the virgin mature females copulated on the day they were paired with virgin males of the same age. Female A. fraterculus seemed to require more than 30 min of mating to supply all spermathecae with sperm, and the efficiency of sperm transference after first mating was 100%.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 308
Author(s):  
Paloma Della Giustina ◽  
Thiago Mastrangelo ◽  
Sohel Ahmad ◽  
Gabriel Mascarin ◽  
Carlos Caceres

A common strategy used to maintain sterile fly quality without sacrificing sterility is to irradiate the insects under an oxygen-reduced atmosphere. So far, sterilizing doses for the South American fruit fly Anastrepha fraterculus have only been determined under normoxia. Our study reports for the first time the dose-sterility response under hypoxia for two different A. fraterculus strains. The pupae were derived from a bisexual strain (a Brazilian-1 population) and a recently developed genetic sexing strain (GSS-89). Two hours prior to irradiation, pupae were transferred to sealed glass bottles and irradiated when oxygen concentration was below 3%. Four types of crosses with nonirradiated flies of the bisexual strain were set to assess sterility for each radiation dose. For males from both strains, Weibull dose–response curves between radiation doses and the proportion of egg hatch, egg-to-pupa recovery, and recovery of adults were determined. The GSS males revealed high sterility/mortality levels compared to males from the bisexual strain at doses < 40 Gy, but a dose of 74 Gy reduced egg hatch by 99% regardless of the male strain and was considered the sterilizing dose. The fertility of irradiated females was severely affected even at low doses under hypoxia.


2021 ◽  
Vol 9 (1A) ◽  
Author(s):  
Valter Arthur

The objective of experiment was determinate the radiation dose for disinfestation to mango Mangifera indica cv. Haden, infested by Anastrepha fraterculus larvae. For realization of the experiment, were collected fruits in the field, which were taking to Entomology laboratory where there was a infestation by the flies in cages during 72 hours period. Waited for the development of the larvae and before 5 – 8 days to infestation, the mangos were irradiated in a Cobalt-60 source with doses of: 0(control), 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1.100, 1.200 and 1.300 Gy. After the irradiation, the fruits were placed in climate chamber with 25 ±5°C of temperature and 70±5% of relative humidity, posteriorly waited the larvae exit to out of the fruit until the transformation in pupae and posteriorly in adult stage. By the results obtained our can concluded that the lethal dose to larvae in mangoes infested with 5-8 days after infestation were 600 Gy and 1.000 Gy (0.6 and 1 kGy) respectively. The dose of 50 Gy prevented the total adult emergence for both treatments. 


1999 ◽  
Vol 28 (2) ◽  
pp. 285-292 ◽  
Author(s):  
Eduardo Humeres ◽  
Ivana B.M. Da Cruz ◽  
Alice K. de Oliveira

Effect of age, sex and time exposure of Anastrepha fraterculus (Wied.) to toxicity of fenthion was evaluated. The age of the flies was important to the appearance of the first intoxication symptoms; males and females of reproductive ages (30 and 60 days-old, respectively) were less susceptible to insecticide than flies in the remainder ages (four and 120 days-old). The effect of body weight on insect intoxication was not detected. LT 50 biossay with fenthion (varying from 3-7 minutes) showed a lower susceptibility of males than females at all ages. Adults of both sexes and 30 days-old submitted to continuous and discontinuous exposure to fenthion did not show toxic cumulative effect of the insecticide. The statistical analysis suggests a possible general detoxification mechanism (quantitative and/or qualitative) to fenthion sex-, age- and time-related. Once the species is highly mobile in nature we suggest that in fruit fly toxicological bioassays, these biological traits need to be observed in order to obtain more realistic data.


2019 ◽  
Vol 17 (1) ◽  
pp. e1001 ◽  
Author(s):  
Emily S. Araujo ◽  
Leticia R. Paiva ◽  
Sidney G. Alves ◽  
Daniele Bevacqua ◽  
Dori E. Nava ◽  
...  

Phenological asynchrony between fruit crops and pests consists of a discrepancy between the period of fruit susceptibility and that of high pest abundance in the orchards. Therefore, it may be used for reducing pesticide applications. We assayed the potential phenological asynchrony between peach cultivars with different growing cycles and the Anastrepha fraterculus (Diptera: Tephritidae). To this end, we assessed fruit infestation by A. fraterculus at harvest for one growing season (2012-2013) in early, average and late maturing peach cultivars. Moreover, the fruit infestation was checked for non-cultivated native and non-cultivated wild exotic plant hosts around the peach orchards of the experimental area during 2013 and 2014. In addition, we monitored A. fraterculus abundance weekly during three consecutive growing seasons, S1 (2011-2012), S2 (2012-2013) and S3 (2013-2014), to assess phenological asynchrony between peach cultivars and A. fraterculus. In particular, we checked the influence of meteorological variables on A. fraterculus abundance, and tested if A. fraterculus abundance at the time when fruits are susceptible differed among cultivars. Eventually we discuss the possibility of sustainable management of peach in southern Brazil. This study constitutes a first assessment of the periods of crop vulnerability and pest presence in peach orchards in South of Brazil and provides necessary information for taking advantage of the phenological asynchrony phenomenon for this pest-crop association.


2019 ◽  
Vol 3 (2) ◽  
pp. 48-51
Author(s):  
Ching Fui Fui ◽  
Gunzo Kawamura ◽  
Kazuhiko Anraku ◽  
Bensan Ali ◽  
Nabilah Zieha Sikh Mohamad ◽  
...  

While the olfactory cue hypothesis has been proposed for spawning migration of silver eels, it has been shown that olfactory cells and associated mucus cells degenerate in male and female eels after hormonally induced sexual maturation. However, the degeneration of the olfactory organ could be a real event in the sequence of maturation, or may be an unnatural side effect of the hormone treatment itself. We morphologically and histologically examined the olfactory rosettes of hormone-untreated and hormone-treated (mixture of hCG and PG) giant mottled eel (Anguilla marmorata) and Japanese eel (A. japonica). The olfactory rosette from all the hormone-treated specimens significantly degenerated at various degeneration levels even in sexually immature specimens, indicating the side effect of the hormone-treatment. However, a sexually immature non-hormone treated female A. marmorata (87.4 cm TL, 199.4 g BW, at less advanced maturity) had slightly degenerated olfactory rosette. Further studies should focus on conducting natural degeneration of the olfactory rosette during the sexual maturation in tropical eels.


2021 ◽  
Author(s):  
Ki-Hyeon Seong ◽  
Siu Kang

AbstractMany animal species exhibit sex differences in the time period prior to reaching sexual maturity. However, the underlying mechanism for such biased maturation remains poorly understood. Females of the fruit flyDrosophila melanogastereclose 4 h faster on average than males, owing to differences in the pupal period between the sexes; this characteristic is referred to as the protogyny phenotype. Here, we aimed to elucidate the mechanism underlying the protogyny phenotype in the fruit fly using our newly developedDrosophilaIndividual Activity Monitoring and Detecting System (DIAMonDS), which can continuously detect the precise timing of both pupariation and eclosion of individual flies. Via this system, following the laying of eggs, we detected the precise time points of pupariation and eclosion of a large number of individual flies simultaneously and succeeded in identifying the tiny differences in pupal duration between females and males. We first explored the role of physiological sex by establishing transgender flies via knockdown of the sex-determination gene,transformer(tra) and its co-factortra2, which retained the protogyny phenotype. In addition, disruption of dosage compensation bymale-specific lethal(msl-2) knockdown did not affect the protogyny phenotype. TheDrosophilamaster sex switch gene—Sxlpromotes female differentiation viatraand turns off male dosage compensation through the repression ofmsl-2.However, we observed that stage-specific whole-body knockdown and mutation ofSxlinduced disturbance of the protogyny phenotype. These results suggest that an additional, non-canonical function ofSxlinvolves establishing the protogyny phenotype inD. melanogaster.Author summaryA wide variety of animals show differences in time points of sexual maturation between sexes. For example, in many mammals, including human beings, females mature faster than males. This maturation often takes several months or years, and precisely detecting the time point of maturation is challenging, because of the continuity of growth, especially in mammals. Moreover, the reason behind the difference in sexual maturation time points between sexes is not fully understood. The fruit flyDrosophila—a model organism—also shows biased maturation between the sexes, with females emerging 4 h faster than males (a characteristic known as the protogyny phenotype). To understand the mechanism underlying the protogyny phenotype, we used our newly developed system,DrosophilaIndividual Activity Monitoring and Detecting System (DIAMonDS), to detect the precise eclosion point in individual fruit flies. Surprisingly, our analysis of transgender flies obtained by knockdown and overexpression techniques indicated that a physiological gender might not be necessary requirement for protogyny and that a non-canonical novel function of the fruit fly master sex switch gene,Sxl, regulates protogyny in fruit flies.


2017 ◽  
Vol 43 (2) ◽  
pp. 201
Author(s):  
Joatan Machado da Rosa ◽  
Cristiano João Arioli ◽  
Aline Costa Padilha ◽  
Lenita Agostinetto ◽  
Marcos Botton

The South American fruit fly, Anastrepha fraterculus (Diptera: Tephritidae) stands out for its polyphagous habit of damaging the production of several fruits in southern Brazil. This study aimed to evaluate the capture efficiency of A. fraterculus using grape juice at different periods of decomposition and aging as well as to test the capture efficiency of the enzymatic hydrolyzed protein Cera Trap® in feijoa crops. The work was conducted in a commercial feijoa orchard in São Joaquim, SC, Brazil during the 2014 growing season. Undiluted Cera Trap®, fresh grape juice and grape juice that had aged for 7 and 14 days were evaluated. All of the treatments with grape juice were used at the recommended concentration of 25 %. McPhail traps were used with 300 mL for each lure. On a weekly basis, the number of adults and the percentage of female fruit flies captured were evaluated, using identification and counting. Cera Trap® was the lure that captured the highest number of fruit flies, with a high percentage of females and with a higher frequency of captures during the season. Cera Trap® also showed the highest number of action thresholds compared to grape juice treatments. The 25 % fresh and aged grape juice showed a low number of captures and a low number of action thresholds. We conclude that fresh and aged grape juice were not effective for capturing and  monitoring A. fraterculus in feijoa orchards. The Cera Trap® lure proves to be an alternative to improve  monitoring of A. fraterculus in orchards in southern Brazil.


Sign in / Sign up

Export Citation Format

Share Document