Molecular phylogenetic evidence for paraphyly of Ceratovacuna and Pseudoregma (Hemiptera, Hormaphidinae) reveals late Tertiary radiation

2013 ◽  
Vol 103 (6) ◽  
pp. 644-655
Author(s):  
Zhang Rui-ling ◽  
Huang Xiao-lei ◽  
Jiang Li-yun ◽  
Qiao Ge-xia

AbstractCeratovacuna and Pseudoregma are important groups in Cerataphidini (Hemiptera, Hormaphidinae) that not only produce soldier aphids in galls on the primary hosts but also produce horned soldiers on the herbaceous secondary hosts. However, due to sampling bias in previous studies, the phylogenetic relationships of these two genera remain inconclusive. In this study, based on more extensive sampling and examination of both mitochondrial (cytochrome c oxidase subunit I (COI); cytochrome b (Cytb)) and nuclear (elongation factor-1α (EF-1α); long-wavelength opsin (LWO)) genes, we reconstructed the phylogenetic relationships of Ceratovacuna and Pseudoregma. Phylogenetic analyses, along with morphological evidence, suggested that these two genera belong to the paraphyletic groups with species clustered into three main groups. The monophyly of Ceratovacuna and Pseudoregma as a whole was generally supported by all analyses. Monophyly of Pseudoregma was also supported. The estimated divergence times demonstrated that diversification of Ceratovacuna and Pseudoregma occurred approximately at 10 mya. The relatively low resolution for the basal relationships of the three main clades may indicate that these two genera have experienced a rapid radiation along with speciation burst of their secondary hosts during the late Tertiary.

2009 ◽  
Vol 34 (1) ◽  
pp. 102-114 ◽  
Author(s):  
M. A. Bello ◽  
A. Bruneau ◽  
F. Forest ◽  
J. A. Hawkins

The order Fabales, including Leguminosae, Polygalaceae, Quillajaceae and Surianaceae, represents a novel hypothesis emerging from angiosperm molecular phylogenies. Despite good support for the order, molecular studies to date have suggested contradictory, poorly supported interfamilial relationships. Our reappraisal of relationships within Fabales addresses past taxon sampling deficiencies, and employs parsimony and Bayesian approaches using sequences from the plastid regions rbcL (166 spp.) and matK (78 spp.). Five alternative hypotheses for interfamilial relationships within Fabales were recovered. The Shimodaira-Hasegawa test found the likelihood of a resolved topology significantly higher than the one calculated for a polytomy, but did not favour any of the alternative hypotheses of relationship within Fabales. In the light of the morphological evidence available and the comparative behavior of rbcL and matK, the topology recovering Polygalaceae as sister to the rest of the order Fabales with Leguminosae more closely related to Quillajaceae + Surianaceae, is considered the most likely hypothesis of interfamilial relationships of the order. Dating of selected crown clades in the Fabales phylogeny using penalized likelihood suggests rapid radiation of the Leguminosae, Polygalaceae, and (Quillajaceae + Surianaceae) crown clades.


Mammalia ◽  
2019 ◽  
Vol 83 (2) ◽  
pp. 180-189 ◽  
Author(s):  
Adam W. Ferguson ◽  
Houssein R. Roble ◽  
Molly M. McDonough

AbstractThe molecular phylogeny of extant genets (Carnivora, Viverridae,Genetta) was generated using all species with the exception of the Ethiopian genetGenetta abyssinica. Herein, we provide the first molecular phylogenetic assessment ofG. abyssinicausing molecular sequence data from multiple mitochondrial genes generated from a recent record of this species from the Forêt du Day (the Day Forest) in Djibouti. This record represents the first verified museum specimen ofG. abyssinicacollected in over 60 years and the first specimen with a specific locality for the country of Djibouti. Multiple phylogenetic analyses revealed conflicting results as to the exact relationship ofG. abyssinicato otherGenettaspecies, providing statistical support for a sister relationship to all other extant genets for only a subset of mitochondrial analyses. Despite the inclusion of this species for the first time, phylogenetic relationships amongGenettaspecies remain unclear, with limited nodal support for many species. In addition to providing an alternative hypothesis of the phylogenetic relationships among extant genets, this recent record provides the first complete skeleton of this species to our knowledge and helps to shed light on the distribution and habitat use of this understudied African small carnivore.


Phytotaxa ◽  
2021 ◽  
Vol 500 (1) ◽  
pp. 1-10
Author(s):  
MENG-LE XIE ◽  
TIE-ZHENG WEI ◽  
BÁLINT DIMA ◽  
YONG-PING FU ◽  
RUI-QING JI ◽  
...  

This study presents one telamonioid species new to science based on morphological characteristics and molecular phylogenetic analyses. Cortinarius khinganensis was collected from the Greater Khingan Mountains, Northeast China and it is characterized by hygrophanous, vivid brownish red and striate pileus, white universal veil, and subglobose spores. According to phylogenetic analyses results, C. khinganensis belongs to the section Illumini, which is a lineage distantly related from subgenus Telamonia sensu stricto. Detailed descriptions of the new species and the comparisons with morphologically similar species are provided. The phylogenetic relationships within the section Illumini are also discussed.


2020 ◽  
Vol 44 (1) ◽  
pp. 206-239 ◽  
Author(s):  
Y.-F. Sun ◽  
D.H. Costa-Rezende ◽  
J.-H. Xing ◽  
J.-L. Zhou ◽  
B. Zhang ◽  
...  

Amauroderma s.lat. has been defined mainly by the morphological features of non-truncate and double-walled basidiospores with a distinctly ornamented endospore wall. In this work, taxonomic and phylogenetic studies on species of Amauroderma s.lat. are carried out by morphological examination together with ultrastructural observations, and molecular phylogenetic analyses of multiple loci including the internal transcribed spacer regions (ITS), the large subunit of nuclear ribosomal RNA gene (nLSU), the largest subunit of RNA polymerase II (RPB1) and the second largest subunit of RNA polymerase II (RPB2), the translation elongation factor 1-α gene (TEF) and the β-tubulin gene (TUB). The results demonstrate that species of Ganodermataceae formed ten clades. Species previously placed in Amauroderma s.lat. are divided into four clades: Amauroderma s.str., Foraminispora, Furtadoa and a new genus Sanguinoderma. The classification of Amauroderma s. lat. is thus revised, six new species are described and illustrated, and eight new combinations are proposed. SEM micrographs of basidiospores of Foraminispora and Sanguinoderma are provided, and the importance of SEM in delimitation of taxa in this study is briefly discussed. Keys to species of Amauroderma s.str., Foraminispora, Furtadoa, and Sanguinoderma are also provided.


2014 ◽  
Vol 28 (6) ◽  
pp. 628 ◽  
Author(s):  
Steven J. B. Cooper ◽  
Christopher H. S. Watts ◽  
Kathleen M. Saint ◽  
Remko Leijs

Scirtidae is a cosmopolitan group of beetles with aquatic or saproxylic larvae. A large diversity of species has recently been described from Australia, but their systematics is uncertain. There is evidence that current genera are polyphyletic and that Australian species were wrongly placed in northern hemisphere genera. Here we investigate the systematics of Australian Scirtidae using molecular phylogenetic analyses of combined data from the mitochondrial cytochrome c oxidase subunit 1 (COI) and nuclear gene elongation factor 1-α (EF1-α) genes. We also assess the current taxonomy of Australian Scirtidae using partial COI sequences. Bayesian phylogenetic analyses of COI and EF1-α sequence data from 81 taxa show that the Australian genera Contacyphon, Pseudomicrocara and Prionocyphon are polyphyletic. There is no close relationship between Australian and Eurasian genera, with the exception of Scirtes. Phylogenetic analyses of partial COI data from Australian Scirtidae generally support the current α taxonomy, with the exception of several species that may be associated with species complexes. Geographically a high proportion of species lineages are restricted to relict patches of wet forest suggesting that they may be relict populations. The phylogeny and sequence data presented here provide a sound basis for further systematic and biogeographical studies of the Scirtidae.


ZooKeys ◽  
2019 ◽  
Vol 862 ◽  
pp. 1-22 ◽  
Author(s):  
Tatsuki Koido ◽  
Yukimitsu Imahara ◽  
Hironobu Fukami

The soft coral family Xeniidae, commonly found in tropical and subtropical regions, consists of 20 genera and 162 species. To date, few studies on this family have been conducted in Japan, especially at higher latitudes. Although molecular phylogenetic analyses have recently been used to distinguish soft coral species, it is difficult to identify species and genera in this family due to the limited taxonomic indices and high morphological variation. In this study, we found a large Xeniidae community off the coast of Oshima Island (31°31.35'N, 131°24.27'E) at Miyazaki, Kyushu Island, located in the temperate region of Japan. The species composition and molecular phylogenetic relationships were investigated to uncover the species diversity of Xeniidae in this community. A total of 182 xeniid specimens were collected and identified to the species level, after which the samples were molecularly analyzed using a mitochondrial marker (ND2) and a nuclear marker (ITS) to infer the phylogenetic relationships. A total of 14 xeniid species were identified, including five undescribed species from five genera (Anthelia, Heteroxenia, Sympodium, Xenia, and Yamazatum). Miyazaki was identified as having the highest xeniid species diversity in Japan. The molecular phylogenetic trees inferred from each marker recovered very similar topologies: four genera (Anthelia, Heteroxenia, Sympodium, and Yamazatum) were monophyletic, whereas one (Xenia) was polyphyletic. Thus, except for Xenia, the morphological characteristics used for traditional taxonomy well reflected the phylogeny of the Xeniidae at the genus level. On the other hand, our results show that further taxonomic revisions of Xenia are needed.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lei Su ◽  
Hua Zhu ◽  
Yongchun Niu ◽  
Yaxi Guo ◽  
Xiaopeng Du ◽  
...  

Abstract The genera Kernia and Acaulium comprise species commonly isolated from dung, soil, decaying meat and skin of animal. The taxonomy of these fungi has been controversial and relies mainly on morphological criteria. With the aim to clarify the taxonomy and phylogeny of these fungi, we studied all the available ex-type strains of a large set of species by means of morphological and molecular phylogenetic analyses. Phylogenetic analysis of the partial internal transcribed spacer region (ITS) and the partial 28S rDNA (LSU) showed that the genera Kernia and Acaulium were found to be separated in two distinct lineages in Microascaceae. Based on morphological characters and multilocus phylogenetic analysis of the ITS, LSU, translation elongation factor 1α and β-tubulin genes, the species in Kernia and Acaulium were well separated and two new combinations are introduced, i.e. Acaulium peruvianum and Acaulium retardatum, a new species of Kernia is described, namely Kernia anthracina. Descriptions of the phenotypic features and molecular phylogeny for identification are discussed for accepted species in two genera in this study.


2009 ◽  
Vol 34 (3) ◽  
pp. 455-475 ◽  
Author(s):  
Harald Schneider ◽  
Alan R. Smith ◽  
Kathleen M. Pryer

Using a morphological dataset of 136 vegetative and reproductive characters, we infer the tracheophyte phylogeny with an emphasis on early divergences of ferns (monilophytes). The dataset comprises morphological, anatomical, biochemical, and some DNA structural characters for a taxon sample of 35 species, including representatives of all major lineages of vascular plants, especially ferns. Phylogenetic relationships among vascular plants are reconstructed using maximum parsimony and Bayesian inference. Both approaches yield similar relationships and provide evidence for three major lineages of extant vascular plants: lycophytes, ferns, and seed plants. Lycophytes are sister to the euphyllophyte clade, which comprises the fern and seed plant lineages. The fern lineage consists of five clades: horsetails, whisk ferns, ophioglossoids, marattioids, and leptosporangiate ferns. This lineage is supported by characters of the spore wall and has a parsimony bootstrap value of 76%, although the Bayesian posterior probability is only 0.53. Each of the five fern clades is well supported, but the relationships among them lack statistical support. Our independent phylogenetic analyses of morphological evidence recover the same deep phylogenetic relationships among tracheophytes as found in previous studies utilizing DNA sequence data, but differ in some ways within seed plants and within ferns. We discuss the extensive independent evolution of the five extant fern clades and the evidence for the placement of whisk ferns and horsetails in our morphological analyses.


2019 ◽  
Vol 192 (1) ◽  
pp. 61-81 ◽  
Author(s):  
Iasmin L C Oliveira ◽  
Andreza O Matos ◽  
Christian Silva ◽  
Maria Luiza S Carvalho ◽  
Christopher D Tyrrell ◽  
...  

Abstract The present study aims to expand the knowledge of phylogenetic relationships in Olyrinae, a subtribe of herbaceous bamboos (Poaceae: Bambusoideae: Olyreae). Our focus is on Parodiolyra and Raddiella, two historically related genera that, with their sister Diandrolyra, form one of the four main lineages in the subtribe. Previous phylogenetic analyses suggested that Parodiolyra is not monophyletic, but its taxonomic boundaries and its relationship with Raddiella remain uncertain due to low sampling. We increased the taxon sampling and sequenced five regions of the nuclear and plastid genomes for this lineage and other representatives of Olyreae. We used maximum parsimony, maximum likelihood, Bayesian inference and coalescence analysis. Our results corroborate the paraphyly of Parodiolyra, with P. micrantha sister to a clade including the remaining Parodiolyra and Raddiella. All remaining Parodiolyra form a well-supported clade, but Raddiella had conflicting resolutions, being either monophyletic or not. Thus, based on phylogenetic and morphological evidence, we here recircumscribe Parodiolyra, transferring P. micrantha and P. colombiensis to the new genus Taquara (described here). Regarding Raddiella, sampling is still not comprehensive and does not allow a decision on to its taxonomic status to be made at this time. Inclusion of other phreatophytic species may be crucial to resolve the problem of conflicting topologies.


2013 ◽  
Vol 26 (5) ◽  
pp. 386 ◽  
Author(s):  
Aleksandra Czumay ◽  
Shanshan Dong ◽  
Armin Scheben ◽  
Alfons Schäfer-Verwimp ◽  
Kathrin Feldberg ◽  
...  

Phylogenetic analyses of a three-marker dataset of Lejeuneaceae (chloroplast genome rbcL gene and trnL–trnF region, and nuclear ribosomal ITS1–5.8S-ITS2 region) resolve Lejeunea huctumalcensis (synonym Ceratolejeunea dussiana) in a well supported lineage with Physantholejeunea portoricensis. Representatives of Lejeunea and Ceratolejeunea form independent lineages. Physantholejeunea and L. huctumalcensis share the presence of ocelli, pycnolejeuneoid innovations and keeled perianths, with keels forming horn-like projections. On the basis of the molecular phylogenetic and morphological evidence, we transfer L. huctumalcensis to Physantholejeunea.


Sign in / Sign up

Export Citation Format

Share Document