Previous herbivory modulates aphid population growth and plant defense responses in a non-model plant, Carthamus tinctorius (Asteraceae)

Author(s):  
Motahareh Amiri Domari ◽  
Seyed Mozaffar Mansouri ◽  
Mohsen Mehrparvar

Abstract Plants have a variety of defense mechanisms that are often induced following attacks by herbivores; this benefits those plants by decreasing performance or preference of herbivores that attack the plants later. We investigated the effects of previous exposure of plants to the safflower aphid, Uroleucon carthami, cotton bollworm, Helicoverpa armigera, and mechanical wounding on subsequent safflower aphid infestations using commercial safflower (Carthamus tinctorius) cultivars and wild safflower species (C. oxyacantha). The experiments were conducted in a greenhouse with two treatments: previously induced plants via direct herbivory or mechanical wounding, and control plants that had never experienced herbivory. To test the performance of safflower aphid on different plant treatments, five unwinged aphids were placed on each plant and allowed to reproduce for 14 days. Finally, the total numbers of aphids on each plant were counted and the percentage of produced winged individuals was calculated. The number of aphids on plants that were previously infested or injured was significantly lower than in control plants. Percentage of winged aphids was significantly higher on induced plants, which is an indicator for unsuitable conditions. Also, significant increase in total phenolic content and hydrogen peroxide was observed in induced plants, showing that the levels of these compounds were either treatment, cultivar and/or genotype × treatment dependent, highlighting the specificity of these interactions. Overall, among the safflower cultivars the lowest number of aphids and the highest percentage of winged aphid individuals were observed on Mahali-Isfahan cultivar and wild safflower, showing that this cultivar is more sensitive to herbivory and/or responds to it more than other cultivars. These findings could contribute to a better utilization of induced defense in the integrated pest management of safflower fields.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
P. Lakshmi Soujanya ◽  
J. C. Sekhar ◽  
C. V. Ratnavathi ◽  
Chikkappa G. Karjagi ◽  
E. Shobha ◽  
...  

AbstractPink stem borer (PSB) causes considerable yield losses to maize. Plant–insect interactions have significant implications for sustainable pest management. The present study demonstrated that PSB feeding, mechanical wounding, a combination of mechanical wounding and PSB regurgitation and exogenous application of methyl jasmonate have induced phenolic compound mediated defense responses both at short term (within 2 days of treatment) and long term (in 15 days of treatment) in leaf and stalk tissues of maize. The quantification of two major defense related phenolic compounds namely p-Coumaric acid (p-CA) and ferulic acid (FA) was carried out through ultra-fast liquid chromatography (UFLC) at 2 and 15 days after imposing the above treatments. The p-CA content induced in leaf tissues of maize genotypes were intrinsically higher when challenged by PSB attack at V3 and V6 stages in short- and long-term responses. Higher p-CA content was observed in stalk tissues upon wounding and regurgitation in short- and long-term responses at V3 and V6 stages. Significant accumulation of FA content was also observed in leaf tissues in response to PSB feeding at V3 stage in long-term response while at V6 stage it was observed both in short- and long-term responses. In stalk tissues, methyl jasmonate induced higher FA content in short-term response at V3 stage. However, at V6 stage PSB feeding induced FA accumulation in the short-term while, wounding and regurgitation treatment-induced defense responses in the long-term. In general, the resistant (DMRE 63, CM 500) and moderately resistant genotypes (WNZ ExoticPool) accumulated significantly higher contents of p-CA and FA content than susceptible ones (CM 202, BML 6) in most of the cases. The study indicates that phenolic mediated defense responses in maize are induced by PSB attack followed by wounding and regurgitation compared to the other induced treatments. Furthermore, the study confirmed that induced defense responses vary with plant genotype, stage of crop growth, plant tissue and short and long-term responses. The results of the study suggested that the Phenolic acids i.e. p-CA and FA may contribute to maize resistance mechanisms in the maize-PSB interaction system.


2004 ◽  
Vol 85 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Magali Merkx-Jacques ◽  
Jacqueline C. Bede

Abstract Plants exhibit remarkable plasticity in their ability to differentiate between herbivorous insect species and subtly adjust their defense responses to target distinct pests. One key mechanism used by plants to recognize herbivorous caterpillars is elicitors present in their oral secretions; however, these elicitors not only cause the induction of plant defenses but recent evidence suggests that they may also suppress plant responses. The absence of “expected changes” in induced defense responses of insect-infested plants has been attributed to hydrogen peroxide produced by caterpillar salivary glucose oxidase (GOX). Activity of this enzyme is variable among caterpillar species; it was detected in two generalist caterpillars, the beet armyworm (Spodoptera exigua) and the bertha armyworm (Mamestra configurata), but not in other generalist or specialist caterpillar species tested. In the beet armyworm, GOX activity fluctuated over larval development with high activity associated with the salivary glands of fourth instars. Larval salivary GOX activity of the beet armyworm and the bertha armyworm was observed to be significantly higher in caterpillars reared on artificial diet as compared with those reared on Medicago truncatula plants. This implies that a factor in the diet is involved in the regulation of caterpillar salivary enzyme activity. Therefore, plant diet may be regulating caterpillar oral elicitors that are involved in the regulation of plant defense responses: our goal is to understand these two processes.


2017 ◽  
Vol 9 (2) ◽  
pp. 162 ◽  
Author(s):  
Juliane Mendes Lemos Blainski ◽  
Argus Cezar da Rocha Neto ◽  
Caroline Luiz ◽  
Márcio José Rossi ◽  
Robson Marcelo Di Piero

Lactic acid bacteria produce several exopolysaccharides (EPS) that may have antimicrobial action and/or induce defense responses in plants. This work aims to evaluate the potential of EPS produced by Lactobacillus plantarum in the protection of tomato plants against bacterial spot caused by Xanthomonas gardneri, as well as to predict the possible mechanisms of action. The EPS were characterized through FTIR and applied at 0; 0.5; 1.5 and 3.0 mg mL-1 in tomato plants with five expanded leaves, followed by the pathogen inoculation after 3 or 7 days. Antimicrobial activity of the biopolymer (1.5 or 10.0 mg mL-1) was evaluated in bioassay when EPS was incorporated into culture medium or embedded in antibiogram disk. The defense mechanisms i.e., total phenolic compounds and flavonoids content, phenylalanine ammonia-lyase (PAL), glutathione reductase (GR) and lipoxygenase (LOX) activities, were measured in tomato plants treated with EPS (1.5 mg mL-1), inoculated or not with X. gardneri. EPS reduced bacterial spot symptoms by up to 72.0% compared to the control. There were no direct effects of EPS on the in vitro growth of X. gardneri. The spectrophotometric profile, ascorbic and ellagic acid concentrations were change in tomato plants after EPS application, in plants challenged with the pathogen. Increases in PAL, GR and LOX activities were observed in plants treated with EPS. Thus, the application of L. plantarum exopolysaccharides can be considered as an effective alternative for controlling bacterial spot in tomato plants. This paper also discusses how these exopolysaccharides reduced the severity of the disease.


2019 ◽  
Vol 20 (10) ◽  
pp. 2525 ◽  
Author(s):  
Laura Bertini ◽  
Luana Palazzi ◽  
Silvia Proietti ◽  
Susanna Pollastri ◽  
Giorgio Arrigoni ◽  
...  

The role of jasmonates in defense priming has been widely recognized. Priming is a physiological process by which a plant exposed to low doses of biotic or abiotic elicitors activates faster and/or stronger defense responses when subsequently challenged by a stress. In this work, we investigated the impact of MeJA-induced defense responses to mechanical wounding in rice (Oryza sativa). The proteome reprogramming of plants treated with MeJA, wounding or MeJA+wounding has been in-depth analyzed by using a combination of high throughput profiling techniques and bioinformatics tools. Gene Ontology analysis identified protein classes as defense/immunity proteins, hydrolases and oxidoreductases differentially enriched by the three treatments, although with different amplitude. Remarkably, proteins involved in photosynthesis or oxidative stress were significantly affected upon wounding in MeJA-primed plants. Although these identified proteins had been previously shown to play a role in defense responses, our study revealed that they are specifically associated with MeJA-priming. Additionally, we also showed that at the phenotypic level MeJA protects plants from oxidative stress and photosynthetic damage induced by wounding. Taken together, our results add novel insight into the molecular actors and physiological mechanisms orchestrated by MeJA in enhancing rice plants defenses after wounding.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Sudhamoy Mandal ◽  
Itishree Kar ◽  
Arup K. Mukherjee ◽  
Priyambada Acharya

We investigated on important parameters of induced resistance in hydroponic tomato (Solanum lycopersicum) againstRalstonia solanacearumusing the elicitors chitosan (CHT), salicylic acid (SA), and jasmonic acid (JA). The increase in total phenolic content of roots by the elicitors was significantly higher than control. Most pronounced increase in lignin synthesis was triggered by SA followed by CHT. At 24 h post-elicitation (hpe), the activity of phenylalanine ammonia lyase was 4.5 times higher than control elicited by CHT. The peroxidase activity was about 86 nkat/mg protein at 24 hpe in case of SA and 78 nkat/mg protein in case of CHT. The activity of polyphenol oxidase increased several folds by the elicitors. Cinnamyl alcohol dehydrogenase activity increased to the maximum at 48 hpe under the influence of CHT. The results indicate that the elicitors SA and CHT induced effective defense responses in tomato plants againstR. solanacearum. This was evident from reduced vascular browning and wilting symptoms of tomato plants treated with SA and CHT and challenged subsequently withR. solanacearum. This reduced disease incidence in tomato by SA and CHT may be a result of cell wall strengthening through deposition of lignin and the coincident induction of defense enzymes.


Biljni lekar ◽  
2020 ◽  
Vol 48 (5) ◽  
pp. 510-521
Author(s):  
Slobodan Krsmanović ◽  
Kristina Petrović ◽  
Boško Dedić ◽  
Ferenc Bagi ◽  
Vera Stojšin ◽  
...  

Sunflower plants show pronounced allelopathic traits and represent a suitable base for potential scientific research work. Understanding and exploiting precisely of that potential could greatly reduce the use of chemical products for plant protection that are intensively used in the production technology of this crop. Today, a big effort is made in sunflower breeding in order to produce the resistance to the economically most important pathogens, which are in most cases phytopathogenic fungi and parasitic weeds such as broomrape. Since sunflower is an increasingly popular crop within farmer fields in the Republic of Serbia, an overview of so far known, passive and active defense mechanisms, that are key for the crop resistance creating, is given. The study also describes in detail, the interactions among the most harmful fungal pathogens and sunflower plants, the expression of genes caused by their attack, and the production of metabolites that are crucial for the induced defense formation.


Author(s):  
Ayami Nishimura ◽  
Anna Yoshioka ◽  
Keisuke Kariya ◽  
Naoki Ube ◽  
Kotomi Ueno ◽  
...  

ABSTRACT Plant defense responses are activated by various exogenous stimuli. We found that an aqueous extract of spent mushroom substrate used for the cultivation of Hypsizygus marmoreus induced defense responses in rice. Fractionation of the spent mushroom substrate extract indicated that the compounds responsible for this induction were neutral and hydrophilic molecules with molecular weights lower than 3 kDa. Compounds with these characteristics, namely glucose, fructose, and sucrose, were detected in the extract at concentrations of 17.4, 3.3, and 1.6 mM, respectively, and the treatment of rice leaves with these sugars induced defense responses. Furthermore, microarray analysis indicated that the genes involved in defense responses were commonly activated by the treatment of leaves with spent mushroom substrate extract and glucose. These findings indicate that the induction of defense responses by treatment with spent mushroom substrate extract is, at least in part, attributable to the sugar constituents of the extract.


Plants ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 23 ◽  
Author(s):  
Jurgen Engelberth ◽  
Marie Engelberth

Green leaf volatiles (GLVs) have long been associated with plant defense responses against insect herbivory. Although some of their biological activities appear to directly affect the attacking herbivore, one of the major functions of GLVs seems to be the priming of these defense responses. This priming is generally considered to impose low costs on the plant should no direct attack happen. Here, we demonstrate that priming of maize seedlings with GLVs is costly for the plants as it results in significantly reduced growth. We further demonstrate that priming very selectively affects growth responses after insect elicitor treatment and mechanical wounding depending on the age and/or the developmental stage of the treated plant. The differential growth response of maize seedlings to treatment with GLVs and subsequent herbivory-related damage sheds new light on the biological activity of these important plant volatile compounds and indicates consequences that go beyond defense.


Sign in / Sign up

Export Citation Format

Share Document