DEVELOPING PREDICTION EQUATIONS AND OPTIMIZING PRODUCTION OF THREE AM FUNGAL INOCULA UNDER ON-FARM CONDITIONS

2011 ◽  
Vol 47 (3) ◽  
pp. 529-537 ◽  
Author(s):  
MAHAVEER P. SHARMA ◽  
ALOK ADHOLEYA

SUMMARYThe production potential of three arbuscular mycorrhizal fungi (AMF), AM-1004 (Glomus intraradices), AM-1209 (mixed indigenous AMF) and AM-1207 (Mycorise, commercial inocula), were examined separately in three fractions/forms (root-based, soil-based and mixture of roots + soil) at 40, 60, 80 and 105 days in raised beds. The beds were amended with organic matter to develop regression equations for predicting optimal AM production vis-à-vis time required for particular inocula using infectious propagules (IP) as the independent variable. The IP production observed in the system was found to vary among the different inocula used. AM-1004 and AM-1207 produced significantly higher propagule counts in root or soil-based samples and a mixture of both at 105 days as compared to AM-1209. Based on two-way ANOVA, irrespective of time, AM-1004 (root/soil-based) produced a significantly larger number of propagules, whereas propagules in the crude inoculum (roots + soil) of all three inocula were not significantly different. On the other hand, irrespective of AMF, significantly more propagules (in all forms) were observed at 105 days. Similarly, irrespective of time, AM-1004 produced significantly higher root colonization (MCP, mycorrhizal colonization percentage) in all three forms (roots: 65.95%; soil: 24.32; soil + roots: 58.03%). The MCP in roots was increased significantly with time of multiplication. However, there was not much improvement in the MCP of soil or in soil + roots fractions beyond 80 days. Further, prediction of the number of IP for the three AM inocula was mathematically derived separately from the Mitscherlish-Bray equation (Y=a–b*exp (–cD). Based on the maximum yield of propagules of the three inocula observed and fitted into equations, root-based AM-1004 and AM-1209 inocula were found to be more efficient in producing propagules in 65 days as compared to AM-1207, which produced propagules in 76 days. While comparing the overall combinations, AM-1004 and AM-1209 inocula used either as roots, soil or a mixture of both and have greater potential in producing more propagules in the shortest span of time. While taking into account the predicted values of AM-1209 crude inoculum, about 12 IP g−1substrate can be achieved in 72 days. Therefore, if a farmer uses crude inocula (having zero time IP of about 0.8/g substrate) of AM 1209, a total production of about 12.12 million IP/m3can be achieved in 72 days. These can be used for on-farm production.




Mycorrhiza ◽  
2014 ◽  
Vol 24 (8) ◽  
pp. 571-580 ◽  
Author(s):  
Thiago Roberto Schlemper ◽  
Sidney Luiz Stürmer


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Peng Wang ◽  
Yin Wang

Morphological observation of arbuscular mycorrhizal fungi (AMF) species in rhizospheric soil could not accurately reflect the actual AMF colonizing status in roots, while molecular identification of indigenous AMF colonizing citrus rootstocks at present was rare in China. In our study, community of AMF colonizing trifoliate orange (Poncirus trifoliataL. Raf.) and red tangerine (Citrus reticulataBlanco) were analyzed based on small subunit of ribosomal DNA genes. Morphological observation showed that arbuscular mycorrhizal (AM) colonization, spore density, and hyphal length did not differ significantly between two rootstocks. Phylogenetic analysis showed that 173 screened AMF sequences clustered in at least 10 discrete groups (GLO1~GLO10), all belonging to the genus ofGlomusSensu Lato. Among them, GLO1 clade (clustering with uncultured Glomus) accounting for 54.43% clones was the most common in trifoliate orange roots, while GLO6 clade (clustering withGlomus intraradices) accounting for 35.00% clones was the most common in red tangerine roots. Although, Shannon-Wiener indices exhibited no notable differences between both rootstocks, relative proportions of observed clades analysis revealed that composition of AMF communities colonizing two rootstocks varied severely. The results indicated that native AMF species in citrus rhizosphere had diverse colonization potential between two different rootstocks in the present orchards.



1998 ◽  
Vol 28 (1) ◽  
pp. 150-153
Author(s):  
J N Gemma ◽  
R E Koske ◽  
E M Roberts ◽  
S Hester

Rooted cuttings of Taxus times media var. densiformis Rehd. were inoculated with the arbuscular mycorrhizal fungi Gigaspora gigantea (Nicol. & Gerd.) Gerd. & Trappe or Glomus intraradices Schenck and Smith and grown for 9-15 months in a greenhouse. At the completion of the experiments, leaves of inoculated plants contained significantly more chlorophyll (1.3-4.1 times as much) than did noninoculated plants. In addition, mycorrhizal plants had root systems that were significantly larger (1.3-1.4 times) and longer (1.7-2.1 times) than nonmycorrhizal plants, and they possessed significantly more branch roots (1.3-2.9 times). No differences in stem diameter and height or shoot dry weight were evident at the end of the experiments, although the number of buds was significantly greater in the cuttings inoculated with G. intraradices after 15 months.



2012 ◽  
Vol 14 (4) ◽  
pp. 692-699 ◽  
Author(s):  
M.C. Arango ◽  
M.F. Ruscitti ◽  
M.G. Ronco ◽  
J. Beltrano

This study evaluated the effects of inoculation with the arbuscular mycorrhizal fungi Glomus mosseae, Glomus intraradices A4 and Glomus intraradices B1 and two phosphorus levels (10 and 40 mg kg-1) on root colonization, plant growth, nutrient uptake and essential oil content in Mentha piperita L. The experiment was carried out in a greenhouse, in 4x2 factorial arrangement, in completely randomized design. At sixty days after transplanting, the mycorrhizal plants had significantly higher fresh matter, dry matter and leaf area compared to non-mycorrhizal plants. The inoculation increased P, K and Ca levels in the shoot which were higher under 40 mg P kg-1 of soil. Plants grown with 40 mg P kg-1 soil increased the essential oil yield per plant by about 40-50% compared to those cultivated with 10 mg P kg-1, regardless of the mycorrhizal treatment. Among the studied fungal species, inoculation with G. intraradices A4 and a high level of P significantly increased plant growth and essential oil yield, compared to the other studied mycorrhizal fungal species. In conclusion, inoculation of arbuscular mycorrhizal fungi into peppermint plants is a feasible alternative to increase the essential oil production and reduce the use of fertilizers required to obtain economic production of peppermint under phosphorus-deficient soil condition.



Nematology ◽  
2011 ◽  
Vol 13 (6) ◽  
pp. 661-672
Author(s):  
Patrick Haydock ◽  
Peter Jones ◽  
Thomas Deliopoulos

AbstractSix potato (Solanum tuberosum) cultivars (Home Guard, Bintje, British Queen, Maris Piper, Pentland Dell and Saturna) were inoculated with Vaminoc (a commercial mixture of three selected arbuscular mycorrhizal fungal (AMF) isolates) and with two of the individual AMF isolates present in Vaminoc, Glomus intraradices (BioRize BB-E) and Glomus mosseae (isolate BEG 12). Root length colonisation by AMF at 6 weeks after shoot emergence ranged from 49 to 54%, with Vaminoc exhibiting the highest percentage. In comparison with control plants, AMF-inoculated plants accelerated the in vitro hatch (21% mean increase) of the potato cyst nematode (PCN) species Globodera pallida (but not of G. rostochiensis) in potato root leachate collected 3 weeks after shoot emergence. The effects of mycorrhization on PCN hatch were broadly similar across the six potato cultivars. This consistency supports the potential use of AMF inoculation of potato plants as part of an integrated pest management strategy for G. pallida.



2019 ◽  
Vol 113 (2) ◽  
pp. 321
Author(s):  
Mazen IBRAHIM

The impact of indigenous arbuscular mycorrhizal fungi (AMF) on agronomic characteristics of sunflower (<em>Helianthus annuus</em> L.) was evaluated in a pot experiment. The indigenous AMF, including <em>Glomus intraradices, Glomus mosseae</em>, and <em>Glomus viscosum</em>, were isolated from an agricultural field in which cotton and sunflower plants were grown. The most abundant species (<em>G. viscosum</em>) was multiplied in a monospecific culture. Sunflower plants were inoculated with the mixture of three selected AMF species or solely with <em>G. viscosum</em>. The number of leaves, shoot length, head diameter, above ground biomass, and seeds mass were significantly higher in the plant inoculated with AMF mixture followed by individual inoculation with <em>G. viscosum</em> followed by the control. AMF mixture outperformed the <em>G. viscosumby</em> increasing mycorrhizal dependency and mycorrhizal inoculation effect of sunflower. The results indicate that AMF mixture could be considered as a good inoculum for improving growth and yield of sunflower in sustainable agriculture.



2005 ◽  
Vol 85 (1) ◽  
pp. 15-21 ◽  
Author(s):  
D. D. Douds Jr. ◽  
G. Nagahashi ◽  
P. E. Pfeffer ◽  
W. M. Kayser ◽  
C. Reider

Arbuscular mycorrhizal (AM) fungi colonize the roots of the majority of crop plants, forming a symbiosis that potentially enhances nutrient uptake, pest resistance, water relations, and soil aggregation. Inoculation with effective isolates of AM fungi is one way of ensuring the potential benefits of the symbiosis for plant production. Although inocula are available commercially, on-farm production of AM fungus inoculum would save farmers the associated processing and shipping costs. In addition, farmers could produce locally adapted isolates and generate a taxonomically diverse inoculum. On-farm inoculum production methods entail increasing inoculated isolates or indigenous AM fungi in fumigated or unfumigated field soil, respectively, or transplanting pre-colonized host plants into compost-based substrates. Subsequent delivery of the inoculum with seed to the planting hole in the field presents technological barriers that make these methods more viable in labor-intensive small farms. However, a readily available method for utilization of these inocula is mixing them into potting media for growth of vegetable seedlings for transplant to the field. Direct application of these inocula to the field and transplant of seedlings precolonized by these inocula have resulted in enhanced crop growth and yield. Key words: AM fungi, sustainable agriculture, biofertilizer



2002 ◽  
Vol 68 (4) ◽  
pp. 1919-1924 ◽  
Author(s):  
Ulrich Hildebrandt ◽  
Katharina Janetta ◽  
Hermann Bothe

ABSTRACT When surface-sterilized spores of the arbuscular mycorrhizal fungus (AMF) Glomus intraradices Sy167 were germinated on agar plates in the slightly modified minimum mineral medium described by G. Bécard and J. A. Fortin (New Phytol. 108:211-218, 1988), slime-forming bacteria, identified as Paenibacillus validus, frequently grew up. These bacteria were able to support growth of the fungus on the agar plates. In the presence of P. validus, hyphae branched profusely and formed coiled structures. These were much more densely packed than the so-called arbuscule-like structures which are formed by AMF grown in coculture with carrot roots transformed with T-DNA from Agrobacterium rhizogenes. The presence of P. validus alone also enabled G. intraradices to form new spores, mainly at the densely packed hyphal coils. The new spores were not as abundant as and were smaller than those formed by AMF in the monoxenic culture with carrot root tissues, but they also contained lipid droplets and a large number of nuclei. In these experiments P. validus could not be replaced by bacteria such as Escherichia coli K-12 or Azospirillum brasilense Sp7. Although no conditions under which the daughter spores regerminate and colonize plants have been found yet, and no factor(s) from P. validus which stimulates fungal growth has been identified, the present findings might be a significant step forward toward growth of AMF independent of any plant host.



Botany ◽  
2009 ◽  
Vol 87 (4) ◽  
pp. 387-400 ◽  
Author(s):  
Christine Juge ◽  
Annie Champagne ◽  
Andrew P. Coughlan ◽  
Nicolas Juge ◽  
Lael Parrott ◽  
...  

The present study is, to the best of our knowledge, the first to investigate the use of the fractal dimension (FD) to quantify the growth and development of undisturbed, fully functional arbuscular mycorrhizal (AM) hyphae developing in vitro. The majority of the work focused on the model AM fungus Glomus intraradices DAOM 181602. The time course study and final measurements of an intact mature extraradical mycelium allowed us to compare the development of the mycelium and the FD value. The final FD value of 1.62 for the mature mycelium is similar to that obtained for highly branched root systems and tree crowns. The FD method was used to characterize the morphology of germinative and presymbiotic hyphae in the presence of stimulatory (strigolactone GR-24, 0.1 µmol·L–1 and bisphenol A, 10 µmol·L–1) and inhibitory (NaCl, 80 mmol·L–1) molecules, and the extraradical phase in the presence of an inhibitory molecule (NaCl, 80 mmol·L–1). Where possible, results were compared with those obtained using the traditional grid-line (GL) technique. The FD approach allowed treatment effects to be accurately quantified, both in germinative and extraradical phases. In the second case, this technique provided a single quantitative value of extraradical hyphal growth that included runner hyphae (RH) networks, and fine-branching (FB) ramifications. This is in contrast to the GL technique, which provides a value for the estimation of RH, but which is not suitable for accurately measuring FB hyphae. Given the ease with which the FD values can be calculated, and the fact that this method can provide a single value for the quantification of extraradical hyphal growth and development, we suggest that this method is useful for in vitro studies. Furthermore under certain situations of germinative or presymbiotic growth, it may be used in concert with the GL method to provide a greater degree of information about hyphal morphology. The usefulness and limits of the FD method at different stages of the AM fungal growth cycle are discussed.



Sign in / Sign up

Export Citation Format

Share Document