The Río Grío–Pancrudo Fault Zone (central Iberian Chain, Spain): recent extensional activity revealed by drainage reversal

2021 ◽  
pp. 1-16
Author(s):  
Alba Peiro ◽  
José L. Simón

Abstract The NNW–SSE-trending extensional Río Grío–Pancrudo Fault Zone is a large-scale structure that obliquely cuts the Neogene NW–SE Calatayud Basin. Its negative inversion during the Neogene–Quaternary extension gave rise to structural and geomorphological rearrangement of the basin margin. Geological mapping has allowed two right-relayed fault segments to be distinguished, whose recent extensional activity has been mainly characterized using a deformed planation surface (Fundamental Erosion Surface (FES) 3; 3.5 Ma) as a geomorphic marker. Normal slip along the Río Grío–Lanzuela Fault Segment has induced hanging-wall tilting, subsequent drainage reversal at the Güeimil valley after the Pliocene–Pleistocene transition, as well as morphological scarps and surficial ruptures in Pleistocene materials. In this sector, an offset of FES3 indicates a total throw of c. 240 m, resulting in a slip rate of 0.07 mm a–1, while retrodeformation of hanging-wall tilting affecting a younger piedmont surface allows the calculation of a minimum throw in the range of 140–220 m after the Pliocene–Pleistocene transition, with a minimum slip rate of 0.07–0.11 mm a–1. For the late Pleistocene period, vertical displacement of c. 20 m of a sedimentary level dated to 66.6 ± 6.5 ka yields a slip rate approaching 0.30–0.36 mm a–1. At the Cucalón–Pancrudo Fault Segment, the offset of FES3 allows the calculation of a maximum vertical slip of 300 m for the last 3.5 Ma, and hence a net slip rate close to 0.09 mm a–1. Totalling c. 88 km in length, the Río Grío–Pancrudo Fault Zone could be the largest recent macrostructure in the Iberian Chain, probably active, with the corresponding undeniable seismogenic potential.

Geosites ◽  
2019 ◽  
Vol 1 ◽  
pp. 1-6
Author(s):  
Robert Biek

The Sevier fault is spectacularly displayed on the north side of Utah Highway 12 at the entrance to Red Canyon, where it offsets a 500,000-year-old basaltic lava flow. The fault is one of several active, major faults that break apart the western margin of the Colorado Plateau in southwestern Utah. The Sevier fault is a “normal” fault, a type of fault that forms during extension of the earth’s crust, where one side of the fault moves down relative to the other side. In this case, the down-dropped side (the hanging wall) is west of the fault; the upthrown side (the footwall) lies to the east. The contrasting colors of rocks across the fault make the fault stand out in vivid detail. Immediately south of Red Canyon, the 5-million-year-old Rock Canyon lava flow, which erupted on the eastern slope of the Markagunt Plateau, flowed eastward and crossed the fault (which at the time juxtaposed non-resistant fan alluvium against coarse-grained volcaniclastic deposits) (Biek and others, 2015). The flow is now offset 775 to 1130 feet (235-345 m) along the main strand of the fault, yielding an anomalously low vertical slip rate of about 0.05 mm/yr (Lund and others, 2008). However, this eastern branch of the Sevier fault accounts for only part of the total displacement on the fault zone. A concealed, down-to-the-west fault is present west of coarse-grained volcaniclastic strata at the base of the Claron cliffs. Seismic reflection data indicate that the total displacement on the fault zone in this area is about 3000 feet (900 m) (Lundin, 1987, 1989; Davis, 1999).


2021 ◽  
Author(s):  
David Hodgson ◽  
Jeff Peakall ◽  
Charlotte Allen ◽  
Luz Gomis Cartesio ◽  
Juan Pablo Milana

Emplacement of submarine landslides, or mass transport deposits, can radically reshape the physiography of continental margins, and strongly influence subsequent sedimentary processes and dispersal patterns. The irregular relief they generate creates obstacles that force reorganisation of sediment transport systems. Subsurface and seabed examples show that channels can incise directly into submarine landslides. Here, we use high-resolution sedimentological analysis, geological mapping and photogrammetric modelling to document the evolution of two adjacent, and partially contemporaneous, sandstone-rich submarine channel-fills (NSB and SSB) that incised deeply (>75 m) with steep lateral margins (up to 70°) into a 200 m thick debrite. The stepped erosion surface mantled by clasts, ranging from gravels to cobbles, points to a period of downcutting and sediment bypass. A change to aggradation is marked by laterally-migrating sandstone-rich channel bodies that is coincident with prominent steps in the large-scale erosion surface. Two types of depositional terrace are documented on these steps: one overlying an entrenchment surface, and another located in a bend cut-off. Above a younger erosion surface, mapped in both NSB and SSB, is an abrupt change to partially-confined tabular sandstones with graded caps, interpreted as confined lobes. The lobes are characterised by a lack of compensational stacking and increasingly thick hybrid bed deposits, suggesting progradation of a lobe complex confined by the main erosion surface. The incision of adjacent and partially coeval channels into a thick submarine landslide, and sand-rich infill including development of partially confined lobes, reflects the complicated relationships between evolving relief and changes in sediment gravity flow character, which can only be investigated at outcrop. The absence of channel-fills in bounding strata, and the abrupt and temporary presence of coarse sediment infilling the channels, indicates that the submarine landslide emplacement reshaped sediment transport systems, and established conditions that effectively separated sand- from mud-dominated deposits.


1995 ◽  
Vol 35 (1) ◽  
pp. 436 ◽  
Author(s):  
G.T. Cooper

The Eastern Otway Basin exhibits two near-or-thogonal structural grains, specifically NE-SW and WNW-ESE trending structures dominating the Otway Ranges, Colac Trough and Torquay Embayment. The relative timing of these structures is poorly constrained, but dip analysis data from offshore seismic lines in the Torquay Embayment show that two distinct structural provinces developed during two separate extensional episodes.The Snail Terrace comprises the southern structural province of the Torquay Embayment and is characterised by the WNW-ESE trending basin margin fault and a number of small scale NW-SE trending faults. The Torquay Basin Deep makes up the northern structural province and is characterised by the large scale, cuspate Snail Fault which trends ENE-WSW with a number of smaller NE-SW trending faults present.Dip analysis of basement trends shows a bimodal population in the Torquay Embayment. The Snail Terrace data show extension towards the SSW (193°), but this trend changes abruptly to the NE across a hinge zone. Dip data in the Torquay Basin Deep and regions north of the hinge zone show extension towards the SSE (150°). Overall the data show the dominance of SSE extension with a mean vector of 166°.Seismic data show significant growth of the Crayfish Group on the Snail Terrace and a lesser growth rate in the Torquay Basin Deep. Dip data from the Snail Terrace are therefore inferred to represent the direction of basement rotation during the first phase of continental extension oriented towards the SSW during the Berriasian-Barremian? (146-125 Ma). During this phase the basin margin fault formed as well as NE-SW trending ?transtensional structures in the Otway Ranges and Colac Trough, probably related to Palaeozoic features.Substantial growth along the Snail Fault during the Aptian-Albian? suggests that a second phase of extension affected the area. The Colac Trough, Otway Ranges, Torquay Embayment and Strzelecki Ranges were significantly influenced by this Bassian phase of SSE extension which probably persisted during the Aptian-Albian? (125-97 Ma). This phase of extension had little effect in the western Otway Basin, west of the Sorrel Fault Zone, and was largely concentrated in areas within the northern failed Bass Strait Rift. During the mid-Cretaceous parts of the southern margin were subjected to uplift and erosion. Apatite fission track and vitrinite reflectance analyses show elevated palaeotemperatures associated with uplift east of the Sorell Fault Zone.


2021 ◽  
Author(s):  
Miriana Chinello ◽  
Michele Fondriest ◽  
Giulio Di Toro

<p>The Italian Central Apennines are one of the most seismically active areas in the Mediterranean (e.g., L’Aquila 2009, Mw 6.3 earthquake). The mainshocks and the aftershocks of these earthquake sequences propagate and often nucleate in fault zones cutting km-thick limestones and dolostones formations. An impressive feature of these faults is the presence, at their footwall, of few meters to hundreds of meters thick damage zones. However, the mechanism of formation of these damage zones and their role during (1) individual seismic ruptures (e.g., rupture arrest), (2) seismic sequences (e.g., aftershock evolution) and (3) seismic cycle (e.g., long term fault zone healing) are unknown. This limitation is also due to the lack of knowledge regarding the distribution, along strike and with depth, of damage with wall rock lithology, geometrical characteristics (fault length, inherited structures, etc.) and kinematic properties (cumulative displacement, strain rate, etc.) of the associated main faults.</p><p>Previous high-resolution field structural surveys were performed on the Vado di Corno Fault Zone, a segment of the ca. 20 km long Campo Imperatore normal fault system, which accommodated ~ 1500 m of vertical displacement (Fondriest et al., 2020). The damage zone was up to 400 m thick and dominated by intensely fractured (1-2 cm spaced joints) dolomitized limestones with the thickest volumes at fault oversteps and where the fault cuts through an older thrust zone. Here we describe two minor faults located in the same area (Central Apennines), but with shorter length along strike. They both strike NNW-SSE and accommodated a vertical displacement of ~300 m.</p><p>The Subequana Valley Fault is about 9 km long and consists of multiple segments disposed in an en-echelon array. The fault juxtaposes pelagic limestones at the footwall and quaternary deposits at the hanging wall. The damage zone is < 25 m  thick  and comprises fractured (1-2 cm spaced joints) limestones beds with decreasing fracture intensity moving away from the master fault. However, the damage zone thickness increases up to ∼100 m in proximity of subsidiary faults striking NNE-SSW. The latter could be reactivated inherited structures.</p><p>The Monte Capo di Serre Fault is about 8 km long and characterized by a sharp ultra-polished master fault surface which cuts locally dolomitized Jurassic platform limestones. The damage zone is up to 120 m thick and cut by 10-20 cm spaced joints, but it reaches an higher fracture intensity where is cut by subsidiary, possibly inherited, faults striking NNE-SSW.</p><p>Based on these preliminary observations, faults with similar displacement show comparable damage zone thicknesses. The most relevant damage zone thickness variations are related to geometrical complexities rather than changes in lithology (platform vs pelagic carbonates).  In particular, the largest values of damage zone thickness and fracture intensity occur at fault overstep or are associated to inherited structures. The latter, by acting as strong or weak barriers (sensu Das and Aki, 1977) during the propagation of seismic ruptures, have a key role in the formation of damage zones and the growth of normal faults.</p>


2020 ◽  
Author(s):  
Chunyan Qu ◽  
Xin Qiao

<p>The left-lateral strike-slip Haiyuan fault system is a major boundary fault zone on the northeast margin of the Qinghai -Tibet Plateau,separating active Tibet block and stable Alaxan & rdos blocks, and accommodating the eastward motion of Tibet Plateau. It consists of several sections, including Lenglongling segment (LLL), the Jinqianghe segment (JQH), the Maomaoshan segment (MMS), the Laohushan segment (LHS) and the rupture of the Haiyuan earthquake in 1920 from the west to the east. In 1920, a M8.5 Haiyuan earthquake occurred in the eastern segment of the fault zone, resulting in a surface rupture zone of about 240 km, with a maximum left-lateral coseismic displacement of 10 m. In the past 100 years after the earthquake, Haiyan fault is in a state of calm, no destructive earthquake of M 6.0 or above occurred. It is worth studying that how the fault activity and seismic hazard of each section of Haiyuan fault zone are at present.</p><p>We use geodetic data (High density InSAR and wide scale GPS) to study the present slip rate and locking degree of Haiyuan fault zone. we first use the Envisat/ASAR long-strip data of five tracks and the PSInSAR time series processing technology based on high coherence point target to obtain the average deformation rate field of the fault system during 2003~2010, and transform the deformation rate from line-of-sight (LOS) direction to the parallel fault direction. Then,we use two-dimensional screw dislocation model to fit the cross-fault deformation rate profiles, and obtain the fault kinematic parameters such as the fault slip rate and the locking depth. At the same time, we adopt the three-dimensional block model to invert the distribution characteristics of fault locking degree and slip rate deficit along the Haiyuan fault zone. We compare the difference of inversion results of different data individually and jointly, including large-scale sparse GPS data, high-density InSAR data and the combination of them. Finally we get the continuous strain accumulation state of the fault zone. The results show that from west to east, the slip rate decreases gradually, while the locking depth changes along the fault. The Laohushan section shows shallow surface creep. The analysis of the high-density cross-fault deformation rate profile of the Laohushan segment indicates that the creep length is about 19 km. Other segments in a locked state. But in the middle of the 1920 erathquake fracture section, the locking degree is weaker and shallower than other segments. These results are helpful to understand the present activity and assess regional seismic risk of Haiyuan fault zone.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Longsheng Deng ◽  
Wenzhong Zhang ◽  
Yan Dai ◽  
Wen Fan ◽  
Yubo Li ◽  
...  

The seismic response is generally amplified significantly near the fault zone due to the influence of discontinuous interfaces and weak-broken geotechnical structures, which imposes a severe geologic hazard risk on the engineering crossing the fault. The Hanjiang to Weihe River Project (phase II) crosses many high seismic intensity regions and intersects with eight large-scale regional active faults. Seismic fortification of the pipelines across the fault zone is significant for the design and construction of the project. A large-scale vibration table test was adopted to investigate the seismic response and fault influences. The responses of accelerations, dynamic stresses, strains, and water pressures were obtained. The results show that the dynamic responses were amplified significantly by the fault zone and the hanging wall. The influence range of fault on acceleration response is approximately four times the fault width. The acceleration amplification ratio in the fault zone generally exceeds 1.35, even reaching 1.8, and the hanging wall amplification ratio is approximately 1.2. The dynamic soil pressure primarily depends on the acceleration distribution and is apparently influenced by pipeline location and model inhomogeneity. The pipeline is bent slightly along the axial direction, accompanied by expansion and shrinkage in the radial direction. The maximum tensile and compressive strains appear at the lower and upper pipeline boundaries near the middle section, respectively. Massive y-direction cracks developed in the soil, accompanied by slight seismic subsidence. The research findings could provide reasonable parameters for the seismic design and construction of the project.


Author(s):  
Paul Leon Göllner ◽  
Jan Oliver Eisermann ◽  
Catalina Balbis ◽  
Ivan A. Petrinovic ◽  
Ulrich Riller

AbstractThe Southern Andes are often viewed as a classic example for kinematic partitioning of oblique plate convergence into components of continental margin-parallel strike-slip and transverse shortening. In this regard, the Liquiñe-Ofqui Fault Zone, one of Earth’s most prominent intra-arc deformation zones, is believed to be the most important crustal discontinuity in the Southern Andes taking up margin-parallel dextral strike-slip. Recent structural studies, however, are at odds with this simple concept of kinematic partitioning, due to the presence of margin-oblique and a number of other margin-parallel intra-arc deformation zones. However, knowledge on the extent of such zones in the Southern Andes is still limited. Here, we document traces of prominent structural discontinuities (lineaments) from the Southern Andes between 39° S and 46° S. In combination with compiled low-temperature thermochronology data and interpolation of respective exhumation rates, we revisit the issue of kinematic partitioning in the Southern Andes. Exhumation rates are maximal in the central parts of the orogen and discontinuity traces, trending predominantly N–S, WNW–ESE and NE–SW, are distributed across the entire width of the orogen. Notably, discontinuities coincide spatially with large gradients in Neogene exhumation rates and separate crustal domains characterized by uniform exhumation. Collectively, these relationships point to significant components of vertical displacement on these discontinuities, in addition to horizontal displacements known from published structural studies. Our results agree with previously documented Neogene shortening in the Southern Andes and indicate orogen-scale transpression with maximal vertical extrusion of rocks in the center of the transpression zone. The lineament and thermochronology data call into question the traditional view of kinematic partitioning in the Southern Andes, in which deformation is focused on the Liquiñe-Ofqui Fault Zone.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Youichiro Takada ◽  
George Motono

Abstract We applied differential InSAR analysis to the Shiretoko Peninsula, northeastern Hokkaido, Japan. All the interferograms of long temporal baseline (~ 3 years) processed from SAR data of three L-band satellites (JERS-1, ALOS, ALOS-2) commonly indicate remarkable phase changes due to the landslide movement at the southeastern flank of Mt. Onnebetsu-dake, a Quaternary stratovolcano. The area of interferometric phase change matches to known landslide morphologies. Judging from the timing of the SAR image acquisitions, this landslide has been moving at least from 1993 to the present. Successive interferograms of 1-year temporal baseline indicate the temporal fluctuation of the landslide velocity. Especially for the descending interferograms, the positive line-of-sight (LOS) length change, which indicates large subsidence relative to the horizontal movement, is observed in the upslope section of the landslide during 1993–1998, while the negative LOS change is observed in the middle and the downslope section after 2007 indicating less subsidence. The landslide activity culminates from 2014 to 2017: the eastward and the vertical displacement rates reach ~ 6 and ~ 2 cm/yr, respectively. Utilizing high spatial resolution of ALOS and ALOS-2 data, we investigated velocity distribution inside the landslide. During 2007–2010, the eastward component of surface displacement increases toward the east, implying that the landslide extends toward the east. During 2014–2017, the vertical displacement profile exhibits spatially periodic uplift and subsidence consistent with surface gradient, which indicates the ongoing deformation driven by gravitational force. Heavy rainfall associated with three typhoons in August 2016 might have brought about an increase in the landslide velocity, possibly due to elevated pore-fluid pressure within and/or at the base of the landslide material. Also, annual rainfall would be an important factor that prescribes the landslide velocity averaged over 3 years.


2021 ◽  
Vol 13 (5) ◽  
pp. 874
Author(s):  
Yu Chen ◽  
Mohamed Ahmed ◽  
Natthachet Tangdamrongsub ◽  
Dorina Murgulet

The Nile River stretches from south to north throughout the Nile River Basin (NRB) in Northeast Africa. Ethiopia, where the Blue Nile originates, has begun the construction of the Grand Ethiopian Renaissance Dam (GERD), which will be used to generate electricity. However, the impact of the GERD on land deformation caused by significant water relocation has not been rigorously considered in the scientific research. In this study, we develop a novel approach for predicting large-scale land deformation induced by the construction of the GERD reservoir. We also investigate the limitations of using the Gravity Recovery and Climate Experiment Follow On (GRACE-FO) mission to detect GERD-induced land deformation. We simulated three land deformation scenarios related to filling the expected reservoir volume, 70 km3, using 5-, 10-, and 15-year filling scenarios. The results indicated: (i) trends in downward vertical displacement estimated at −17.79 ± 0.02, −8.90 ± 0.09, and −5.94 ± 0.05 mm/year, for the 5-, 10-, and 15-year filling scenarios, respectively; (ii) the western (eastern) parts of the GERD reservoir are estimated to move toward the reservoir’s center by +0.98 ± 0.01 (−0.98 ± 0.01), +0.48 ± 0.00 (−0.48 ± 0.00), and +0.33 ± 0.00 (−0.33 ± 0.00) mm/year, under the 5-, 10- and 15-year filling strategies, respectively; (iii) the northern part of the GERD reservoir is moving southward by +1.28 ± 0.02, +0.64 ± 0.01, and +0.43 ± 0.00 mm/year, while the southern part is moving northward by −3.75 ± 0.04, −1.87 ± 0.02, and −1.25 ± 0.01 mm/year, during the three examined scenarios, respectively; and (iv) the GRACE-FO mission can only detect 15% of the large-scale land deformation produced by the GERD reservoir. Methods and results demonstrated in this study provide insights into possible impacts of reservoir impoundment on land surface deformation, which can be adopted into the GERD project or similar future dam construction plans.


Sign in / Sign up

Export Citation Format

Share Document