The digestion by cattle of silage and barley diets containing increasing quantities of fishmeal

1987 ◽  
Vol 109 (2) ◽  
pp. 261-272 ◽  
Author(s):  
J. A. Rooke ◽  
D. G. Armstrong

SummaryA 4 × 4 latin-square design experiment was carried out to determine the effects of increasing nitrogen (N) intake by feeding diets containing increasing amounts of fishmeal upon the digestion of organic matter (OM) and N by cattle equipped with rumen and duodenal cannulae. A basal diet (B) containing 600 g silage and 400 g ground barley/kg diet and three diets (BF1, BF2 and BF3) in which increasing amounts of the silage and barley basal diet were proportionately replaced by fishmeal were fed. The mean daily intakes of OM and N when each diet was fed were 4·29, 4·28, 4·22 and 4·20 kg OM and 90, 108, 125 and 143 g N for diets B, BF1, BF2 and BF3 respectively.Neither the amounts of OM entering the small intestine nor those voided in the faeces were altered by the diets fed. Thus mean apparent OM digestibility for all the diets fed was 0·74 ± 0·007 and the proportion of digestible OM intake apparently digested in the rumen was 0·83±0·011.Mean daily concentrations of ammonia N in the rumen were significantly(P <0·01) increased from 85 mg N/l (diet B) to 129 mg N/1 (diet BF3) as fishmeal intake increased.The quantities of non-ammonia N (P<0·05) and of amino acid N (P<0·001) entering the small intestine were significantly increased as more fishmeal was added to the diets fed. As fishmeal intake increased apparent N digestibility was significantly (P<0·001) increased.Neither the quantities of microbial N entering the small intestine daily nor the apparent efficiency of microbial N synthesis within the rumen were increased by the diets fed. The quantities of feed N entering the small intestine daily were significantly (P<0·01) increased as fishmeal intake increased; thus apparent feed N degradability in the rumen was significantly (P<0·05) decreased from 0·84 (diet B) to 0·73 (diet BF3) as fishmeal intake increased. Similarly, the rates of disappearance of N from each of the four barley or barley and fishmeal concentrates when incubated in the rumens of the cattle in porous synthetic fibre bags were decreased as the proportion of fishmeal in the concentrates increased. Thus, the rumen N degradability of the diets fed, when calculated from the rates of disappearance of N from porous synthetic fibre bags placed in the rumen, decreased as fishmeal intake increased.As fishmeal intake increased the amino acid composition of duodenal digesta (expressed as g/kg determined amino acids) changed such that the content of arginine increased (P<0·01) and the content of isoleucine decreased (P<0·01). The concentrations of arginine (P<0·01), leucine and lysine (P<0·05) in blood plasma increased as fishmeal intake increased.

1986 ◽  
Vol 107 (2) ◽  
pp. 263-272 ◽  
Author(s):  
J. A. Rooke ◽  
P. Alvareza ◽  
D. G. Armstrong

SummaryA 4 x 4 latin-square design experiment was carried out to determine the effects of increasing nitrogen (N) intake by feeding diets containing increasing amounts of soyabean meal upon the digestion of organic matter (OM) and N by cattle equipped with rumen and duodenal cannulae. A basal diet (B) containing 600 g ground barley and 400 g grass silage/kg diet and three diets (BS1, BS2 and BS3) in which increasing amounts of the barley were replaced by soya-bean meal were fed. The mean daily intakes of OM and N when each diet was fed were 4·56, 4·55, 4·30 and 4·52 kg OM and 920, 114·7, 138·3 and 164·1 g N for diets B, BSl, BS2 and BS3 respectively.Neither the amounts of OM entering the small intestine nor those voided in the faeces were altered by the diets fed. Thus the mean apparent OM digestibility for all the diets fed was 0·74 + 0·013 and the proportion of digestible OM intake apparently digested in the rumen was 0·77 + 0048.Mean daily concentrations of ammonia N in the rumen were significantly (P < 0·001) increased from 38 mg N/l (diet B) to 129 mg N/l (diet BS3) as N intake increased.The quantities of non-ammonia N and of amino acid N entering the small intestine were not significantly (P >0·05) increased as more soya-bean meal was added to the diet, although diet BSl supported the greatest flows of N to the small intestine. Thus as more soya-bean meal was added to the diet there were increasing net losses of nonammoniaN(P < 0·01) and amino acid N (P < 0·01) prior to the small intestine. Faecal N excretion was not increased (P > 0·05) as soya-bean meal intake increased and thus apparent N digestibility was significantly (P < 0·01) increased by increasing soyabean intake.Both the quantities of microbial N entering the small intestine daily and the apparent efficiency of microbial N synthesis within the rumen were increased when diet BSl was fed in comparison with the basal diet (B) and then declined when diets BS2 and BS3 were fed; these increases were not significant. The quantities of feed N entering the small intestine daily were not significantly (P > 0·05) increased as soya-bean meal intake increased; thus apparent feed N degradability in the rumen was significantly (P < 0·01) increased as soya-bean meal intake increased. In contrast, the rates of disappearance of N from each of the components of the diets fed, when incubated in the rumens of the cattle in porous synthetic fibre-bags, were not increased (P > 0·05) as soya-bean meal intake increased.


1991 ◽  
Vol 71 (3) ◽  
pp. 767-771
Author(s):  
R. G. Rotter ◽  
G. D. Phillips

Ergot (Claviceps purpurea) causes serious deleterious effects in animals which ingest it, and it may also affect the rate of passage of digesta through the intestine. In a Latin square design experiment with repeated measurements, the mean transit times (MTT) of digesta in the small intestine were determined in four intact rams fed ergot (0.0, 0.05, 0.10 and 0.15% of the diet) with their daily feed allotments. Although there was a very slight indication of an effect as the ergot treatment concentration increased, the values were not significantly different (P > 0.05). Despite possible differences in the effects of individual constituent ergot alkaloids, there was no affect on the MTT in the small intestine of sheep. Key words: Ergot, rate of passage, sheep, mean transit time


1982 ◽  
Vol 48 (3) ◽  
pp. 527-541 ◽  
Author(s):  
B. R. Cottrill ◽  
D. E. Beever ◽  
A. R. Austin ◽  
D. F. Osbourn

1. A total of six diets based on maize silage were formulated to examine the effect of protein- and non-protein-nitrogen, and energy supplementation on the flow of amino acids to the small intestine and the synthesis of microbial amino acids in the rumen of growing cattle. All diets contained 24 g totai nitrogen (N)/kg dry matter (DM), of which 550 g N/kg total N was supplied by either urea or fish meal. Four diets contained low levels of barley (estimated total dietary metabolizable energy content of 10·4 M J/kgDM) and urea-N and fish meal-N were supplied in the ratios 3:1, 1·4:1, 0·6:1 and 0·3:1. The other two diets contained between 300 and 400 g barley/kg total diet (11·3 MJ metabolizable energy/kg DM) and the urea-N to fish meal-N ratios were 3:1 and 0·3:1.2. On the four low-energy diets, fish meal inclusion tended to reduce the extent of organic matter (OM) digestion in the rumen but significantly increased duodenal amino acid supply (P< 0·05) in a quadratic manner. Microbial-N synthesis was increased by the two intermediate levels of fish meal supplementation but declined at the highest level of inclusion. With increasing levels of fish meal inclusion, a greater proportion of the dietary protein was found to escape rumen degradation and the apparent degradabilities of fish meal and maize-silage protein of all four diets were estimated to be 0·22 and 0·73 respectively.3. The substitution of barley for part of the maize silage enhanced duodenal supply of amino acids, irrespective of the form of the N supplement, and stimulated microbial amino acid synthesis. For all diets efficiency of microbial-N synthesis was found to vary between 22·5 and 46 g N/kg rumen-digested OM. Contrary to what was found for low-energy diets, the inclusion of fish meal tended to reduce the flow of dietary protein to the small intestine, but these differences were not statistically significant.4. The results appertaining to microbial synthesis, dietary protein degradabilities and duodenal amino acid flow for all diets are discussed in relation to the Agricultural Research Council (1980) proposals for the protein requirements of ruminants, and the production responses observed when similar diets were fed to growing cattle.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245739
Author(s):  
Inês Vieira da Silva ◽  
Bárbara P. Soares ◽  
Catarina Pimpão ◽  
Rui M. A. Pinto ◽  
Teresa Costa ◽  
...  

The regulation of glycerol permeability in the gastrointestinal tract is crucial to control fat deposition, lipolysis and gluconeogenesis. Knowing that the amino acid glutamine is a physiological regulator of gluconeogenesis, whereas cystine promotes adiposity, herein we investigated the effects of dietary supplementation with glutamine and cystine on the serum biochemical parameters of piglets fed on amino acid-enriched diets, as well as on the transcriptional profile of membrane water and glycerol channels aquaporins (AQPs) in the ileum portion of the small intestine and its impact on intestinal permeability. Twenty male piglets with an initial body weight of 8.8 ± 0.89 kg were allocated to four dietary treatments (n = 5) and received, during a four week-period, a basal diet without supplementation (control) or supplemented with 8 kg/ton of glutamine (Gln), cystine (Cys) or the combination of the two amino acids in equal proportions (Gln + Cys). Most biochemical parameters were found improved in piglets fed Gln and Cys diet. mRNA levels of AQP3 were found predominant over the others. Both amino acids, individually or combined, were responsible for a consistent downregulation of AQP1, AQP7 and AQP10, without impacting on water permeability. Conversely, Cys enriched diet upregulated AQP3 enhancing basolateral membranes glycerol permeability and downregulating glycerol kinase (GK) of intestinal cells. Altogether, our data reveal that amino acids dietary supplementation can modulate intestinal AQPs expression and unveil AQP3 as a promising target for adipogenesis regulation.


2020 ◽  
Vol 98 (3) ◽  
Author(s):  
Wilfredo D Mansilla ◽  
Lisa Fortener ◽  
James R Templeman ◽  
Anna K Shoveller

Abstract Threonine (Thr) requirements for immature (growing) Beagles have been determined, but little knowledge is available on Thr requirements for maintenance in mature dogs. Moreover, differences of Thr requirements among different breeds or sizes of adult dogs have not been investigated. The objective of the present study was to determine Thr requirements in adult dogs of three different breeds using the indicator amino acid oxidation (IAAO) technique. In total, 13 adult dogs were used, 4 Miniature Dachshunds (5.8 ± 0.4 kg body weight [BW]; 3 spayed and 1 neutered), 4 spayed Beagles (9.3 ± 0.6 kg BW), and 5 neutered Labrador Retrievers (30.5 ± 1.7 kg BW). Dogs were fed a Thr-deficient diet (Thr = 0.23%) and randomly allocated to receiving one of seven concentrations of Thr supplementation (final Thr concentration in experimental diets was 0.23%, 0.33%, 0.43%, 0.53%, 0.63%, 0.73%, and 0.83%; as fed basis) for 2 d. After 2 d of adaptation to the experimental diets, dogs underwent individual IAAO studies. During the IAAO studies, total daily feed was divided into 13 equal meals; at the sixth meal, dogs were fed a bolus of l-[1-13C]-Phenylalanine (Phe) (9.40 mg/kg BW), and thereafter, l-[1-13C]-Phe (2.4 mg/kg BW) was supplied with every meal. Before feeding the next experimental diet, dogs were fed a Thr-adequate basal diet for 4 d (Thr = 0.80% as fed basis) in known amounts that maintained individual dog BW. Total production of 13CO2 during isotopic steady state was determined by enrichment of 13CO2 in breath samples and total production of CO2 measured using indirect calorimetry. The mean requirements for Thr, defined as the breakpoint, and the 95% confidence interval (CI) were determined using a two-phase linear regression model. For Miniature Dachshunds, the two-phase model was not significant, and Thr requirements could not be determined. Mean Thr requirements for Beagles and Labradors were 72.2 and 64.1 mg/kg BW on an as-fed basis, respectively. The requirement for Thr between these two dog breeds was not different (P &gt; 0.10). Thus, the data for Beagles and Labradors were pooled and a mean requirement for Thr was determined at 66.9 mg/kg BW, and the 95% CI was estimated at 84.3 mg/kg BW. In conclusion, estimated Thr requirements for Beagles and Labradors did not differ, and these recommendations are higher than those suggested by NRC (2006) and AAFCO (2014) for adult dogs at maintenance.


1974 ◽  
Vol 32 (3) ◽  
pp. 479-489 ◽  
Author(s):  
J. H. G. Holmes ◽  
H. S. Bayley ◽  
P. A. Leadbeater ◽  
F. D. Horney

1. Six 45 kg pigs with re-entrant ileal cannulas were used in two 3 × 3 Latin-square design experiments to study the site of absorption of protein and amino acids. Semi-purified diets containing soya-bean meal (SBM), rapeseed meal (RSM) or no protein source (protein-free) were offered at the rate of 1 kg dry matter/d.2. Flow-rates of ileal contents for 24 h collection periods, corrected for recovery of marker, were 3135, 3127 and 1243 ml (SE 390) for SBM, RSM and protein-free diets respectively.3. Amounts of dry matter digested in the small intestine were 730, 669 and 809 g/d for SBM, RSM and protein-free diets respectively, all values being significantly different (P < 0·001).4. Nitrogen intakes were 32·6, 29·9 and 5·9 g/d, and amounts digested in the small intestine were 25·7, 20·2 and 1·6 g/d for SBM, RSM and protein-free diets respectively, all values being significantly different (P < 0·001). Amounts digested in the large intestine were 2·6, 3·7 and 0·7 g/d.5. Total amino acid intakes and amounts collected at the ileum and in the faeces were (g/d): SBM, 177, 24 and 18; RSM, 149, 28 and 22; protein-free 3, 9 and 12. Digestibility in the small intestine was higher for SBM than RSM for seventeen of the eighteen amino acids estimated. Greater quantities of arginine, methionine, cystine and tyrosine were voided in the faeces than passed through the ileal cannulas for pigs receiving the SBM and RSM diets. For those receiving the protein-free diet this was true for each amino acid except proline.6. Significant differences were found between all diets in the concentration of some amino acids in ileal and faecal amino-N, and endogenous protein secretions did not mask the differences between diets.7. Differences in digestibility between SBM and RSM were greater at the ileum than in the faeces. Amino acid fermentation in the large intestine obscured or reduced differences between SBM and RSM.


1976 ◽  
Vol 27 (3) ◽  
pp. 437 ◽  
Author(s):  
FM Tomas ◽  
BJ Potter

The effect of magnesium chloride infusion to different sites in the gastrointestinal tract of sheep upon the net absorption of magnesium from different regions of the digestive tract has been examined. Four Merino wethers were each prepared with cannulas sited in the rumen, in the duodenum adjacent to the pylorus and in the terminal ileum. The basal diet provided 18.45 mmoles magnesium/ day and an additional 65 mmoles magnesium/day as magnesium chloride was continuously infused into (A) the rumen, (B) the rumen and duodenum in equal portions, (C) the duodenum and (D) the terminal ileuni. A continuous infusion of Cr-EDTA to the ruinen enabled digcsta and magnesium flow rates to be estimated from digesta samples obtained from the intestinal cannulas at 4 hr intervals over 3 days. For treatments A, B, C and D respectively, the mean net absorption of magnesium (mmoles/day) from the rumen was 20.4, 11.4, 1.4 and 3.4; from the small intestine –0.5, 1.7, –5.1 and –9.8; from the large intestine 4.6, 2.2, 12.7 and 12.3; and from the total gastrointestinal tract 24.6, 15.4, 9.1 and 4.9. In each case the effect of treatment was significant. The total net absorption of magnesium caudal to the pylorus was unaffected by treatment. Plasma magnesium levels were reduced during post-ruminal infusion of magnesium, but these changes were not obviously linked to the changed net absorption from the intestinal segments. The urinary and faecal excretion of magnesium, but not the magnesium balance, was strongly related to the total net absorption of magnesium. The results emphasize the major contribution of the stomach to the gastrointestinal net absorption of magnesium and show that although the amount absorbed from this region may influence separately the net absorption from the large and small intestine, it does not appear to influence the overall intestinal net absorption of magnesium.


1983 ◽  
Vol 49 (1) ◽  
pp. 67-76 ◽  
Author(s):  
Yeon Sook Lee ◽  
Tadashi Noguchi ◽  
Hiroshi Naito

1. In an attempt to investigate calcium absorption in the rat during the postprandial period, with the least alteration of the physical environment, the undisturbed small intestine was ligated in situ 2·5 or 3·0 h after ingestion of a diet containing 200 g casein/kg or an equivalent amino acid mixture, or 925 g casein/kg. Estimation of Ca absorption was made by comparing the amount of soluble 40Ca or 45Ca in the contents of segments from the rats receiving 45Ca by intubation 30 min after withdrawal of food, ligated after a further 30 min, then killed after 0 or 30 min.2. Under conditions such that the estimated amount of a marker, polyethylene glycol, in segments ligated in a defined position was little changed in rats killed 30 min apart, the difference in the amount of soluble 40Ca was much higher in the rats fed on the basal diet containing 200 g casein/kg than in other groups.3. This specific effect on Ca absorption, particularly in the distal portion of the small intestine, could be seen also after 45Ca was directly injected into ligated segments in situ. The amount of 45Ca in the portal blood 15 min after injection of the label was also highest in the rats given the basal diet.4. The results were in agreement with our previous findings that the formation and accumulation of casein phosphopeptides causes an increase in the amount of soluble Ca in the distal small intestine.


2021 ◽  
Vol 9 (1) ◽  
pp. 11-20
Author(s):  
O. A. Ikuwegbu

Four calves equipped with permanent rumen and T-piece duodenal caninulus were given four diets in a Latin square experiment carried out at two stages of development. DM flow was measured by dual-phase markers. The basal diet of hay and concentrate was calculated to be low In rumen degradable N (RDN) and. tissue N. Additional RDN was provided by ad­ding 6, 12 or 18g urea/kg concentrate. Supplementary urea did not affect OM digestion either in the stomach or In the entire digestive tract. At the older age OM digestion in the stomach and the entire tract was significantly higher. On the basal diet, N retention was low. The flow of microbial N measured by the DAPA technique was not affected by diet and it was calculated that between 3 and 7g "s/d were recycled to the rumen. The addition of supplementary urea increased N retention par­ticularly at the lowest level of supplementation due to a concomitant decrease In urinary N.


1971 ◽  
Vol 25 (2) ◽  
pp. 225-233 ◽  
Author(s):  
E. R. Ørskov ◽  
C. Fraser ◽  
I. McDonald

1. Four sheep were given four diets containing proportions of rolled barley and soya-bean meal varied to provide 10.3, 13.3, 16.1 and 19.9% crude protein in the dietary dry matter; the treatments were given according to a 4 x 4 Latin square design. The mean daily intake was 989 g dry matter. The apparent disappearance of protein, ash, ether extractives and carbohydrate before the abomasum, between the abomasum and terminal ileum and between the terminal ileum and rectum was measured.2. The amount of non-ammonia crude protein (Y1, g/d) disappearing from the small intestine increased with protein intake (X, g/d) according to the equation Y1 = 2.12X – 0.0057X2–83, reaching a maximum when there was about 19% crude protein in the dry matter of the diet.3. The treatments had no significant effects on the disappearance of starch, ether extractives or ash. About 93% of starch disappeared in the rumen and 6% in the small intestine. The total mean daily intake of ether extractives was 21 g; 9 g were added in the rumen, 24 g disappeared from the small intestine and 6 g were excreted in the faeces. The total mean daily intake of ash was 67 g; 26 g were added in the rumen, 37 g disappeared from the small intestine, 9 g from the large intestine and 47 g were excreted in the faeces.


Sign in / Sign up

Export Citation Format

Share Document