scholarly journals Screening of plant extracts for antifungal activities against Colletotrichum species of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata (L.) Walp)

2012 ◽  
Vol 151 (4) ◽  
pp. 482-491 ◽  
Author(s):  
J. I. G. MASANGWA ◽  
T. A. S. AVELING ◽  
Q. KRITZINGER

SUMMARYThe aim of the present investigation was to evaluate the antifungal activities of plant extracts which can be used to control bean and cowpea anthracnose. Acetone, ethyl acetate and water extracts of Ipomoea batatas, Carica papaya, Allium sativum, Syzygium cordatum, Chlorophytum comosum and Agapanthus caulescens were screened in vitro for their antifungal activities against Colletotrichum lindemuthianum and Colletotrichum dematium of common bean and cowpea using the agar disc infusion and microtitre double-dilution techniques. The same extracts were then tested for antifungal activity in vivo as seed treatments against anthracnose disease. The water extracts of Carica and Syzygium were active against C. lindemuthianum and had minimum inhibitory concentrations (MICs) of 1·56 mg/ml. Syzygium, Allium and Chlorophytum water extracts were active against C. dematium and MICs were 3·13, 6·25 and 12·5 mg/ml, respectively. The MICs of Allium, Syzygium and Agapanthus acetone extracts were 0·78, 3·13 and 6·25 mg/ml, respectively, against C. lindemuthianum and 0·78, 6·25 and 3·13 mg/ml against C. dematium. Agapanthus water extracts and all the acetone extracts tested in vivo effectively reduced the incidence and severity of bean anthracnose disease in the greenhouse. Agapanthus acetone, Allium water, and both acetone and water extracts of Carica and Syzygium performed well in vivo in reducing cowpea anthracnose disease and compared well with reductions due to the application of the synthetic fungicide fludioxonil+mefenoxam (the commercial product Celest® XL) applied at 25 gai/l and also with levels in the non-inoculated control. The Agapanthus, Carica, Syzygium and Allium extracts were active on both Colletotrichum spp. in vitro and also reduced anthracnose disease of bean and cowpea and are potential seed treatments in anthracnose disease control. The easy seed treatment process and the accessibility of plants used in the present study could lead to high adoption of the use of the plant extracts as seed treatments by resource-poor, smallholder farmers.

2016 ◽  
Vol 155 (1) ◽  
pp. 18-31 ◽  
Author(s):  
J. I. G. MASANGWA ◽  
Q. KRITZINGER ◽  
T. A. S. AVELING

SUMMARYThe present study was initiated to investigate the effect of crude plant extracts as seed treatments on Phaseolus vulgaris (common bean) and Vigna unguiculata (cowpea) seed germination and emergence in the presence of Colletotrichum lindemuthianum and Colletotrichum dematium, respectively. Common bean and cowpea seeds were treated with crude water and acetone extracts of Agapanthus caulescens Spreng., Allium sativum L., Carica papaya L. and Syzygium cordatum Hochst.ex Krauss at 5 and 15 mg/ml concentrations. Seeds treated with the synthetic fungicide fludioxonil+mefenoxam (the commercial product Celest® XL) represented the positive control, whereas dimethyl sulphoxide and water-soaked seeds represented negative controls. The rolled paper towel method of the International Seed Testing Association was used to investigate the effect of the treatments on seed germination. Mean emergence time (MET) was determined using seed inoculated with the respective pathogens. The changes in the ultrastructure of embryonic roots and the connecting tissues of embryo-cotyledon of common bean and cowpea treated with Syzygium acetone extracts and Agapanthus water extracts were investigated using transmission electron microscopy (TEM). High germination percentages of >90% were observed in bean seeds from two production seasons treated with low concentrations of water extracts of Allium, Syzygium and Agapanthus and acetone extracts of Allium, Agapanthus and Carica. These treatments also recorded high emergence percentages with low MET values, which were similar to the water control. Cowpea seeds treated with Carica water extract had the highest germination and emergence. Syzygium acetone was the only extract that gave higher germination and emergence in both IT93K5132 and PAN 311 varieties. Therefore, Carica water and Syzygium acetone extracts can be considered as potential bean and cowpea seed treatments. Generally, there were inconsistencies in terms of correlations of germination with emergence percentages in both cowpea and bean seed treated with plant extracts used in the study, which could be due to differences in vigour. The TEM study of embryo-cotyledon tissue of both species revealed that Syzygium and Agapanthus extract seed treatment may accelerate metabolic processes as evidenced by the presence of vacuoles, many cristae and few lipid bodies.


Author(s):  
Dewa Ngurah Suprapta

Abstract Plant fungal pathogens are frequently found as one of limiting factors for crop production. More than 10,000 species of fungi can cause disease in plants. To control the diseases, many farmers are still rely on the use of chemical fungicides, however most synthetic fungicides can cause acute toxicity, and some cause chronic toxicity as well. Thus, an appropriate technological improvement towards a more effective use of natural resources is required in agriculture to develop environmentally friendly sustainable farming system. This paper highlights the potential of extracts of tropical plants as antifungal agent to control plant fungal diseases. Information and data presented in this paper are mainly derived from selected and related references that previously published in the scientific journals. Many higher plants of tropical origin with fungicidal activities and their potential for fungal disease control of agricultural crops have been studied, however most of the studies have been done under in vitro condition. Some plant extracts showed strong antifungal activities on in vitro as well as in vivo tests, but some plant extracts showed significant antifungal activities on in vitro test, but did not obvious on in vivo tests. A great variation in antifungal activities were shown by plants extracts of different species and plant parts, in one hand, and on the other hand, variation was also observed on the responses of different fungal species to the same plant extract. Since the purpose of the use of plant extract is to control plant fungal diseases, the field trial is needed to ensure the stability of efficacy of certain plant extract. In addition, isolation and identification of active substances in the extracts is needed to assess possible mode of action and side effect of their use.


2020 ◽  
Vol 28 (4) ◽  
pp. 567-584
Author(s):  
K. Kugui ◽  
L.A. Mwamburi ◽  
E.K. Kiprop

Pawpaw (Carica papaya L.) is a fruit crop of economic importance in Kenya, where small scale farmers are the major producers. One factor limiting pawpaw production is anthracnose disease caused by Colletotrichum gloeosporoides, whose management on farm still remains a major challenge. The objective of this study was to determine the efficacy of plant extracts and extracting agents for controlling anthracnose disease on pawpaw fruits. In vitro spore germination and in-vivo tests were done using extracts from five plants; Aloe chiliensis, Azadiracta indica, Carissa edulis, Fuerstia africana and Solanum incanum; and extracting agents methanol, chloroform and ethanol against the fungus. A logistic regression model was used to estimate the botanicals’ dose response treatment ranges. The efficacy of the crude extracts was greatest when methanol was used for extraction. The highest inhibition was recorded in pawpaw fruits treated with leaf extracts of F. africana. There were significant differences in effects among treatments by methanolic extracts of the five plants on conidial spore germination percentage. Aloe chilensis (Aloe) showed a higher spore germination of 35.7%; while Azadirachta indica (Neem) resulted in the lowest spore germination of 1.2%. There were significant differences in days to healing of C. papaya fruits infected with anthracnose. Pawpaw infected fruits healed fastest (3.5 days) when treated with the methanolic leaf extracts of F. africana; while A. chiliensis ethanolic leaf extracts resulted in the longest healing time of over 7 days. Although these botanical fungicides present high potentials or controlling anthracnose pathogens of pawpaw fruits, their suitability for application within the socio-economic framework of Kenyan small-scale producers still remains a matter for further investigation.


2021 ◽  
Author(s):  
Fernanda Aparecida Castro Pereira ◽  
Geraldo Humberto Silva ◽  
Elaine Aparecida de Souza ◽  
Denilson Ferreira de Oliveira ◽  
Willian Rodrigues Macedo ◽  
...  

Abstract Among the fungi that cause damage to the common bean and are disseminated by the seeds, Colletotrichum lindemuthianum (Sacc. e Magn.) Briosi e Cavara stands out. This fungus causes anthracnose in common bean ( Phaseolus vulgaris L.). Use of natural compounds is a viable and safer option than chemicals to manage this disease. Essential oils have shown antifungal potential against phytopathogenic fungi. According to the results of the in vitro test, we observed complete inhibition of the growth of C. lindemuthianum with the use of cassia cinnamon essential oil ( Cinnamomum cassia ) (EO) and its major component ( E )-Cinnamaldehyde, presenting MIC of 125 µg/mL, while the commercial fungicide presented MIC of 30.6 µg/mL. And in vivo , where seeds naturally infected with C. lindemuthianum were treated with the EO and the substance in a solution with commercial soybean oil, we observed that the treatments did not affect germination and initial seed vigor. In addition, the seed treatment with solutions formulated from EO and ( E )-cinnamaldehyde was efficient for reducing the incidence of anthracnose over the days evaluated, as well as for the commercial fungicide used (methyl thiophanate). This is the first study to demonstrate the efficacy of C. cassia oil and (E)-cinnamaldehyde in the control of C. lindemuthianum through the treatment of common bean seeds.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1503
Author(s):  
Carla Guijarro-Real ◽  
Mariola Plazas ◽  
Adrián Rodríguez-Burruezo ◽  
Jaime Prohens ◽  
Ana Fita

Antiviral treatments inhibiting Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication may represent a strategy complementary to vaccination to fight the ongoing Coronavirus disease 19 (COVID-19) pandemic. Molecules or extracts inhibiting the SARS-CoV-2 chymotripsin-like protease (3CLPro) could contribute to reducing or suppressing SARS-CoV-2 replication. Using a targeted approach, we identified 17 plant products that are included in current and traditional cuisines as promising inhibitors of SARS-CoV-2 3CLPro activity. Methanolic extracts were evaluated in vitro for inhibition of SARS-CoV-2 3CLPro activity using a quenched fluorescence resonance energy transfer (FRET) assay. Extracts from turmeric (Curcuma longa) rhizomes, mustard (Brassica nigra) seeds, and wall rocket (Diplotaxis erucoides subsp. erucoides) at 500 µg mL−1 displayed significant inhibition of the 3CLPro activity, resulting in residual protease activities of 0.0%, 9.4%, and 14.9%, respectively. Using different extract concentrations, an IC50 value of 15.74 µg mL−1 was calculated for turmeric extract. Commercial curcumin inhibited the 3CLPro activity, but did not fully account for the inhibitory effect of turmeric rhizomes extracts, suggesting that other components of the turmeric extract must also play a main role in inhibiting the 3CLPro activity. Sinigrin, a major glucosinolate present in mustard seeds and wall rocket, did not have relevant 3CLPro inhibitory activity; however, its hydrolysis product allyl isothiocyanate had an IC50 value of 41.43 µg mL−1. The current study identifies plant extracts and molecules that can be of interest in the search for treatments against COVID-19, acting as a basis for future chemical, in vivo, and clinical trials.


2019 ◽  
Vol 20 (18) ◽  
pp. 4556 ◽  
Author(s):  
Hanna Zielinska-Blizniewska ◽  
Przemyslaw Sitarek ◽  
Anna Merecz-Sadowska ◽  
Katarzyna Malinowska ◽  
Karolina Zajdel ◽  
...  

Obesity is a complex disease of great public health significance worldwide: It entails several complications including diabetes mellitus type 2, cardiovascular dysfunction and hypertension, and its prevalence is increasing around the world. The pathogenesis of obesity is closely related to reactive oxygen species. The role of reactive oxygen species as regulatory factors in mitochondrial activity in obese subjects, molecules taking part in inflammation processes linked to excessive size and number of adipocytes, and as agents governing the energy balance in hypothalamus neurons has been examined. Phytotherapy is the traditional form of treating health problems using plant-derived medications. Some plant extracts are known to act as anti-obesity agents and have been screened in in vitro models based on the inhibition of lipid accumulation in 3T3-L1 cells and activity of pancreatic lipase methods and in in vivo high-fat diet-induced obesity rat/mouse models and human models. Plant products may be a good natural alternative for weight management and a source of numerous biologically-active chemicals, including antioxidant polyphenols that can counteract the oxidative stress associated with obesity. This review presents polyphenols as natural complementary therapy, and a good nutritional strategy, for treating obesity without serious side effects.


2005 ◽  
Vol 77 (1) ◽  
pp. 41-51 ◽  
Author(s):  
A. Gurib-Fakim ◽  
H. Subratty ◽  
F. Narod ◽  
J. Govinden-Soulange ◽  
F. Mahomoodally

The Mauritian population has a long tradition in the use of ethno-medicine, and the practice is still strong, especially in the treatment of minor ailments. Such interest stems from an existing culture, and many “tisanes” are still prepared from plant materials and sold in several markets around the island.This paper will focus on the various chemical/biological screening techniques currently being used to evaluate the biological properties of medicinal plant extracts. Particular emphasis will be put on extraction and various screening for biological/pharmacological properties. Due consideration will be given to the pharmacological approaches that utilize different animal models for the in vitro and in vivo screening of medicinal plant extracts.


2010 ◽  
Vol 2 (3) ◽  
pp. 72-76 ◽  
Author(s):  
Bilal Ahmad PADDER ◽  
Prem Nath SHARMA ◽  
Renu KAPIL ◽  
Anju PATHANIA ◽  
Om Prakash SHARMA

Three bioagents (Trichoderma viride, T. harzianum and Gliocladium virens) and five biopesticides (Achook, Neemgold, Wannis, Spictaf and Neemazal) were evaluated under in vitro and in vivo conditions against Colletotrichum lindemuthianum. All the three antagonistic fungi caused significant inhibition of mycelial growth, maximum being with T. viride (69.21%) followed by T. harzianum (64.20%). Among the biopesticides tested at four concentrations, Wanis applied @ 1000 ?l/ml caused maximum inhibition of 82.12 per cent followed by Spictaf (52.85%). T. viride and Wanis @ 1000 ?l/ml were most effective in reducing the seed borne infection. Integration of bioagents with Bavistin showed that disease can be effectively managed with seed dressing either with Bavistin or biopesticide followed by foliar treatment with fungicide or biopesticide.


Sign in / Sign up

Export Citation Format

Share Document