Study of the effects of PR toxin, mycophenolic acid and roquefortine C on in vitro gas production parameters and their stability in the rumen environment

2014 ◽  
Vol 153 (1) ◽  
pp. 163-176 ◽  
Author(s):  
A. GALLO ◽  
G. GIUBERTI ◽  
T. BERTUZZI ◽  
M. MOSCHINI ◽  
F. MASOERO

SUMMARYMoulds belonging to Penicillium section roqueforti are common contaminants of feedstuffs and produce several mycotoxins that can cause health hazards when ingested by farm animals. Among these, PR toxin (PR), mycophenolic acid (MY) and roquefortine C (RC) have been frequently detected in forages, particularly silages. The aims of the current trials were to study the effects of the presence of pure mycotoxins on in vitro rumen fermentation parameters and to assess their stability in the rumen environment. Two successive in vitro gas production experiments were carried out: a central composite design with four replications of central point (CCD) and a completely randomized design with a fully factorial arrangement of treatments (FFD). In CCD, the effects of PR, MY and RC concentrations in diluted rumen fluid (i.e. 0·01, 0·30, 1·01, 1·71 and 2·00 μg of each mycotoxin/ml) were tested. Gas volume produced after 48 h of incubation (Vf) decreased linearly as concentrations of RC and MY in diluted rumen fluid increased, with marginal effects similar for two mycotoxins, being respectively −14·6 and −13·4 ml/g organic matter (OM) for each 1·0 μg/ml of increment in mycotoxin concentration. Similarly, total volatile fatty acid (VFA) production decreased quadratically as concentrations of RC and MY increased, with marginal effects about two times higher for MY than RC, being −4·22 and −2·62 mmol/l for each 1·0 μg/ml of increment in mycotoxin concentration. With respect to maximum Vf (i.e. 410·6 ml/g OM) and VFA (98·06 mmol/l) values estimated by the model, decreases of 13·6 and 15·2% were obtained when incubating the highest RC and MY concentrations, respectively. The PR did not interfere with rumen fermentation pattern and it was not recovered after 48 h of incubation, whereas the stabilities of MY and RC in rumen fluid were similar and on average equal to about 50%. On the basis of CCD results, a second experiment (FFD) was carried out in which only effects of MY and RC concentrations (i.e. 0, 0·67, 1·33 and 2·00 μg of each mycotoxin/ml of diluted rumen fluid) were tested. Data from FFD showed Vf decreased linearly when concentrations of MY and RC increased, with marginal effect two-folds higher for MY than for RC (−11·1 ml/g OM and −6·7 ml/g OM, respectively). Similar marginal effects of MY and RC in decreasing VFA production were recorded: −2·38 and −2·86 mmol/l for each 1·0 μg/ml of increment in mycotoxin concentration, respectively. At the highest RC and MY tested concentrations, Vf and VFA decreased by 8·7 and 10·7%, respectively, over maximum estimated values. In FFD, the average amounts of MY and RC recovered in rumen fluid after 48 h of incubation were 79·0 and 40·6%, respectively. In conclusion, the MY and RC from standards interfered with rumen microorganisms at relatively low levels and were partially stable in the rumen environment after 48 h of incubation. These findings suggested that MY and RC could interfere with digestive processes and might represent a potential risk for ruminants fed diets containing feeds contaminated by mycotoxins produced by P. roqueforti.

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 466-466
Author(s):  
Angela R Boyer ◽  
Yun Jiang ◽  
Alon Blakeney ◽  
Dennis Nuzback ◽  
Brooke Humphrey ◽  
...  

Abstract Vistore® minerals are hydroxychloride minerals that feature high metal content and improved bioavailability. This study was conducted to compare different sources of zinc (Zn) on in vitro rumen fermentation parameters. Three ruminally-cannulated Jersey heifers were adapted to a lactation diet for two weeks before used as donors. Three sources of Zn were tested at 20 ppm: No supplemental Zn (CON), ZnSO4, Vistore Zn, and another Zn hydroxychloride (Vistore-competitor). The concentration of Zn in this study was selected from a titration study (0 to 40 ppm ZnSO4) to identify the minimum concentration of ZnSo4 affecting rumen fermentation. The lactation diet (TMR) was dried and ground to 1mm and used as substrate. Rumen fluid was collected two hours after feeding. Substrate (0.5 g) was inoculated with 100 mL of 3:1 McDougall’s buffer: ruminal flued mixture at 39ºC for 24 h. Each treatment was run in triplicate and in three runs. Data were analyzed with R 3.0. The model included fixed effect of treatment and random effect of run. ZnSO4 reduced (P < 0.05) maximum gas production, DMD (54 vs. 55.9%) and cellulose (27.5 and 40.7%) digestibility. acetate to propionate ration (2.20 vs. 2.24) and NH3-N concentration (6.0 vs. 7.0 mg/dL), increased (P < 0.05) propionate % (27.2 vs 26.7%) compared to control. Vistore had higher pH than control (6.44 vs. 6.40, P = 0.02) but did not affect other parameters compared to CON. Vistore-competitor reduced total VFA production compared to control, ZnSO4, and Vistore (94 vs. 102, 106 and 107 mM, respectively, P = 0.01) but did not affect other parameters. In general, Vistore Zn maintained in vitro ruminal fermentation and digestibility, while ZnSO4 had negative effects on both fermentation and digestibility and Vistore-competitor reduced total VFAs. Results indicate hydroxychloride minerals may stabilize rumen parameters versus sulfate sources but different hydroxychloride sources appear to influence rumen parameters differently.


2002 ◽  
Vol 2002 ◽  
pp. 132-132 ◽  
Author(s):  
V. Mlambo ◽  
F. L. Mould ◽  
T. Smith ◽  
E. Owen ◽  
I. Mueller-Harvey

After prolonged exposure to tanniniferous diets, it has been reported that some rumen microorganisms acquire defensive mechanisms against tannins (Brooker et al., 2000) or produce tannin-degrading enzymes. Such rumen microorganisms are said to be “tannin resistant” as their fermentation activity is less inhibited by the presence of tannins in the host’s diet. As acacia pods contain tannins their use as protein supplements for goats in the dry season may require that they be first detannified e.g. by using polyethylene glycol (PEG). However, goats with prior exposure to tanniniferous diets may have developed adaptive mechanisms to deal with tannins. This study, therefore, investigated the need for tannin inactivation in feeds given to ‘adapted’ animals by comparing the effect on the in vitro fermentation of tree pods incubated with and without PEG using rumen fluid from adapted and unadapted goats.


2020 ◽  
Vol 8 (8) ◽  
pp. 1160 ◽  
Author(s):  
Jiangkun Yu ◽  
Liyuan Cai ◽  
Jiacai Zhang ◽  
Ao Yang ◽  
Yanan Wang ◽  
...  

This study was performed to explore the predominant responses of rumen microbiota with thymol supplementation as well as effective dose of thymol on rumen fermentation. Thymol at different concentrations, i.e., 0, 100 mg/L, 200 mg/L, and 400 mg/L (four groups × five replications) was applied for 24 h of fermentation in a rumen fluid incubation system. Illumina MiSeq sequencing was applied to investigate the ruminal microbes in addition to the examination of rumen fermentation. Thymol doses reached 200 mg/L and significantly decreased (p < 0.05) total gas production (TGP) and methane production; the production of total volatile fatty acids (VFA), propionate, and ammonia nitrogen, and the digestibility of dry matter and organic matter were apparently decreased (p < 0.05) when the thymol dose reached 400 mg/L. A thymol dose of 200 mg/L significantly affected (p < 0.05) the relative abundance of 14 genera of bacteria, three species of archaea, and two genera of protozoa. Network analysis showed that bacteria, archaea, and protozoa significantly correlated with methane production and VFA production. This study indicates an optimal dose of thymol at 200 mg/L to facilitate rumen fermentation, the critical roles of bacteria in rumen fermentation, and their interactions with the archaea and protozoa.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Mohammad Faseleh Jahromi ◽  
Juan Boo Liang ◽  
Rosfarizan Mohamad ◽  
Yong Meng Goh ◽  
Parisa Shokryazdan ◽  
...  

The primary objective of this study was to test the hypothesis that solid state fermentation (SSF) of agro-biomass (using rice straw as model); besides, breaking down its lignocellulose content to improve its nutritive values also produces lovastatin which could be used to suppress methanogenesis in the rumen ecosystem. Fermented rice straw (FRS) containing lovastatin after fermentation withAspergillus terreuswas used as substrate for growth study of rumen microorganisms usingin vitrogas production method. In the first experiment, the extract from the FRS (FRSE) which contained lovastatin was evaluated for its efficacy for reduction in methane (CH4) production, microbial population, and activity in the rumen fluid. FRSE reduced total gas and CH4productions (P<0.01). It also reduced (P<0.01) total methanogens population and increased the cellulolytic bacteria includingRuminococcus albus,Fibrobacter succinogenes(P<0.01), andRuminococcus flavefaciens(P<0.05). Similarly, FRS reduced total gas and CH4productions, methanogens population, but increasedin vitrodry mater digestibility compared to the non-fermented rice straw. Lovastatin in the FRSE and the FRS significantly increased the expression of HMG-CoA reductase gene that produces HMG-CoA reductase, a key enzyme for cell membrane production in methanogenic Archaea.


2022 ◽  
Vol 8 ◽  
Author(s):  
Zhi Yuan Ma ◽  
Ju Wang Zhou ◽  
Si Yu Yi ◽  
Min Wang ◽  
Zhi Liang Tan

In vitro rumen batch culture is a technology to simulate rumen fermentation by inoculating microorganisms from rumen fluids. Although inocula (INO) are commonly derived from fresh rumen fluids, frozen rumen fluids are also employed for the advantages of storing, transporting, and preserving rumen microorganisms. The effects of frozen INO on microbial fermentation and community may be interfered with by substrate type, which has not been reported. This study was designed to test whether rumen fluid treatments (i.e., fresh and frozen) could interact with incubated substrates. A complete block design with fractional arrangement treatment was used to investigate the effects of INO (fresh or frozen rumen fluids) and concentrate-to-forage ratios (C/F, 1:4 or 1:1) on rumen fermentation and microbial community. The effects of increasing C/F were typical, including increased dry matter (DM) degradation and total volatile fatty acids (VFA) concentration (P &lt; 0.001), and decreased acetate to propionate ratio (P = 0.01) and bacterial diversity of richness and evenness (P ≤ 0.005) with especially higher fermentative bacteria such as genus Rikenellaceae_RC, F082, Prevotella, Bacteroidales_BS11, Muribaculaceaege, and Christensenellaceae_R-7 (P ≤ 0.04). Although frozen INO decreased (P &lt; 0.001) DM degradation and altered rumen fermentation with lower (P ≤ 0.01) acetate to propionate ratio and molar proportion of butyrate than fresh INO, typical effects of C/F were independent of INO, as indicated by insignificant INO × C/F interaction on substrate degradation, VFA profile and bacterial community (P ≥ 0.20). In summary, the effect of C/F on fermentation and bacterial diversity is not interfered with by INO type, and frozen INO can be used to distinguish the effect of starch content.


2004 ◽  
Vol 55 (11) ◽  
pp. 1125 ◽  
Author(s):  
P. Frutos ◽  
G. Hervás ◽  
F. J. Giráldez ◽  
A. R. Mantecón

Abstract. Batch cultures of rumen microorganisms, using rumen fluids from 4 ruminant species, sheep, goats, cows, and deer, were used to study the ability of polyethylene-glycol (PEG 6000) to inhibit the effect of 2 types of tannins, quebracho (QUE, a condensed tannin) and tannic acid (TA, a hydrolysable tannin) on several in vitro rumen fermentation characteristics. Both QUE and TA were able to impair ruminal fermentation (they reduced gas production, extent of degradation, ammonia-N, and volatile fatty acid concentrations, etc.; P < 0.05), with differences depending on the inoculum donor. The clearest effect of tannins was the reduction of the rates of fermentation, which was observed in all species (P < 0.05). The detrimental effects of tannins were removed by the presence of PEG in most cases, but there were important variations and noticeable exceptions. Thus, for instance, PEG failed to revert the negative effect of TA on the rate of fermentation and the extent of degradation (P < 0.05). The extent of the limited ability of PEG to completely inhibit the negative effects of tannins on in vitro ruminal fermentation seems to depend both on the type of tannin and the species of the rumen inoculum donor.


2000 ◽  
Vol 2000 ◽  
pp. 24-24
Author(s):  
C. Rymer ◽  
D.I. Givens ◽  
B.R Cottrill

The in vitro gas production technique is a means of measuring the dynamics of fermentation. It is related to short chain fatty acid (SCFA) production, and so could be used to estimate ATP supply for rumen microorganisms. However, different fermentation patterns produce different amounts of gas. No fermentation gas is associated with the production of propionate, and so an increase in the proportion of propionic: (acetic+butyric) (P:AB) would be associated with a decrease in the volume of gas produced. If the molar proportions of SCFA changed during a fermentation, then this would complicate the interpretation of the gas production profile (GPP). If the GPP, combined with a measure of SCFA concentrations at the end of the incubation, was used to estimate ATP yield during the incubation, then changes in P:AB during the incubation may affect these estimates. The objectives of this experiment were therefore to determine whether P:AB did change during an in vitro incubation, and whether any such change affected the accuracy of the prediction of ATP yield with time.


2021 ◽  
Author(s):  
Dinh Van Dung ◽  
Le Duc Thao ◽  
Le Duc Ngoan ◽  
Le Dinh Phung ◽  
Hynek Roubík

Abstract This study aimed to evaluate the effects of biochar produced from tropical biomass resources (rice straw, corncob and bamboo) at different processing temperatures (300, 500 and 700oC) on in vitro rumen fermentation and methane production. Treatments were arranged as a 3x3 factorial with three biomass resources and three biochar processing temperatures. Added biochar occupied 3% of the substrate (DM basic). 250 mg of the air-dried substrate was incubated in 120 ml bottles, which contained 25 ml of mixed rumen fluid and buffer mineral solution. Total gas and methane production, in vitro digestibility of DM, OM, and in vitro rumen fermentation characteristics were determined at three-time points: 4, 24 and 48 hours of the incubation. Results showed that biomass resources and processing temperatures affected gas production at 4, 24 and 48 hours of the incubation (P < 0.02). Interactions between biomass resources and processing temperatures affected gas production at 4 hours (P = 0.06) and 24 hours (P = 0.001). Biomass resources and processing temperatures affected methane production at different time points of the incubation, except the effect of biomass resources at 24 hours (P = 0.406). Increased processing temperature from 300 to 700oC reduced gas and methane production (P < 0.05). Biomass resources affected OM digestibility after 4 and 24 hours of incubation. Processing temperatures and their interaction with biomass resources affected OM digestibility after 48 hours of incubation (P < 0.001). NH3-N concentrations at 24 and 48h were highest for corncob, then rice straw, and lowest for bamboo tree derived biochar (P < 0.05). Increased processing temperatures resulted in higher NH3-N concentrations at 24 and 48 hours of incubation (P < 0.05). To mitigate methane production, biomass resources and processing temperatures should be considered when utilising biochar as feed additive in ruminant diets.


2017 ◽  
Vol 17 (2) ◽  
pp. 491-502 ◽  
Author(s):  
Wisam S. Al-Jumaili ◽  
Yong M. Goh ◽  
Saied Jafari ◽  
Mohamed A. Rajion ◽  
Mohamed F. Jahromi ◽  
...  

Abstract An in vitro gas production technique, using rumen fluid from four Kacang × Boer crossbred adult goats was used to study the effects of commercial tannic acid (TA, a hydrolysable tannin) on methanogenesis, fatty acid composition and biohydrogenation (BH) of C18 polyunsaturated fatty acids (PUFA) in the rumen. Treatments were control (CON, 50% alfalfa hay (AH) + 50% concentrate), 25 mg TA/250 mgDM (LTA, low TA) and 50 mg TA/250 mgDM (HTA, High TA), which were mixed with 30 mL of buffered rumen fluid and incubated for 24 h. The study revealed that TA supplementation had no negative effect on rumen fermentation parameters such as pH, NH3N, acetic/propionic ratio and total volatile fatty acid (tVFA). Methane (CH4) production (mL/250 mg DM) decreased (P<0.05) with increasing levels of TA. Greatest CH4 reduction (%) was recorded for MTA (20.30%) and LTA (13.00%) compared with CON. Supplementation of the diet with TA did not affect the rate of rumen BH (%) of C18:1n-9 (oleic acid; OA), C18:2n-6 (linoleic acid; LA), C18:3n-3 (linolenic acid; LNA) and the concentration of fatty acids after 24 h of in vitro incubation. Based on this study, the addition of TA in vitro reduced rumen methanogenesis without negative effect of rumen fermentation characteristics, but in vivo studies need to be performed to determine if concentrations that inhibit methane are below toxic levels.


2017 ◽  
Vol 57 (8) ◽  
pp. 1607 ◽  
Author(s):  
S. C. L. Candyrine ◽  
M. F. Jahromi ◽  
M. Ebrahimi ◽  
J. B. Liang ◽  
Y. M. Goh ◽  
...  

An in vitro gas-production study was conducted to compare differences in rumen fermentation characteristics and the effect of supplementation of 4% linseed oil as a source of polyunsaturated fatty acids on the rumen fermentation profile in rumen fluid collected from goats and sheep. Rumen fluid for each species was obtained from two male goats of ~18 months old and two sheep of similar sex and age fed the similar diet containing 30% alfalfa hay and 70% concentrates. The substrate used for the fermentation was alfalfa hay and concentrate mixture (30:70) without (control) and with addition of linseed oil. The experiment was a two (inoculums) × two (oil levels) factorial experiment, with five replicates per treatment, and was repeated once. Rumen fermentation characteristics, including pH, fermentation kinetics, in vitro organic matter digestibility (IVOMD), volatile fatty acid (VFA) production and microbial population were examined. Results of the study showed that gas-production rate (c), IVOMD, VFA production and population of total bacteria and two cellulolytic bacteria (Ruminococus albus and Butyrivibrio fibrisolvens) from rumen fluid of goat were significantly (P &lt; 0.05) higher than those of samples from sheep. Irrespective of sources of inoculums, addition of oil did not affect fermentation capacity, IVOMD and total VFA production. The higher B. fibrisolvens population (associated with bio-hydrogenation) in rumen fluid of goat seems to suggest that polyunsaturated fatty acids are more prone to bio-hydrogention in the rumen of goat than in sheep. This assumption deserves further investigation.


Sign in / Sign up

Export Citation Format

Share Document