Effects of nitrogen application and supplemental irrigation on canopy temperature and photosynthetic characteristics in winter wheat

2018 ◽  
Vol 156 (1) ◽  
pp. 13-23 ◽  
Author(s):  
D. Q. Yang ◽  
W. H. Dong ◽  
Y. L. Luo ◽  
W. T. Song ◽  
T. Cai ◽  
...  

AbstractNitrogen (N) application and irrigation to winter wheat may decrease leaf temperature and enhance photosynthesis: as a result, more photosynthates will be allocated to the grains, resulting in higher grain yields. To investigate this hypothesis, a 2-year field study was conducted with three levels of N fertilizer application (no fertilizer, N0; 240 kg N/ha, N1; 360 kg N/ha, N2) and two different water regimes (rainfed with no irrigation, R; irrigation at the over-wintering, stem elongation and grain filling stages, W). The results show that both N application and supplemental irrigation significantly increased grain yield with increases in both grain number/m2 and the 1000-grain weight, viz., WN2>WN1>WN0>RN2>RN1>RN0. In addition, application of N under both water regimes significantly increased flag leaf area, above-ground biomass and single stem productivity and decreased leaf temperature, which led to an increase in net photosynthesis rates and ribulose bisphosphate (RuBP) carboxylase activity. Moreover, analysis of the chlorophyll α fluorescence transient showed that N fertilizer application and supplemental irrigation significantly increased electron donor and acceptor performance of the photosystem II reaction centre.

1992 ◽  
Vol 118 (1) ◽  
pp. 101-107 ◽  
Author(s):  
T. M. Addiscott ◽  
D. S. Powlson

SUMMARYWhen 15N is used to trace the fate of N fertilizer applied in spring to winter wheat crops, some is not recovered in the crop or the soil and has to be presumed lost. In 13 experiments made from 1980 to 1983 on three widely differing soils, these losses ranged from 1 to 35%. We partitioned them between leaching and denitrification by using models to estimate the loss by leaching, talcing into account the N absorbed by the crops, and subtracting this loss from the total loss to obtain the apparent percentage loss by denitrification, LDN. An analysis of variance showed that LDN increased significantly with the quantity of N applied, so the study considered LDN values for a standard N application of 150 kg/ha subsequently. Regressions showed that LDN was better related to the wetness of the soil during the 3 weeks after fertilizer application than to the corresponding amount of rain, as would be expected for denitrification. Values of LDN could not, however, be satisfactorily related to soil temperature, probably because the range of temperatures was too narrow. The apparent losses by denitrification were, on average, nearly twice as large as those by leaching, but the ratio varied greatly between experiments.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 740
Author(s):  
Ken Okamoto ◽  
Shinkichi Goto ◽  
Toshihiko Anzai ◽  
Shotaro Ando

Fertilizer application during sugarcane cultivation is a main source of nitrogen (N) loads to groundwater on small islands in southwestern Japan. The aim of this study was to quantify the effect of reducing the N fertilizer application rate on sugarcane yield, N leaching, and N balance. We conducted a sugarcane cultivation experiment with drainage lysimeters and different N application rates in three cropping seasons (three years). N loads were reduced by reducing the first N application rate in all cropping seasons. The sugarcane yields of the treatment to which the first N application was halved (T2 = 195 kg ha−1 N) were slightly lower than those of the conventional application (T1 = 230 kg ha−1 N) in the first and third seasons (T1 = 91 or 93 tons ha−1, T2 = 89 or 87 tons ha−1). N uptake in T1 and T2 was almost the same in seasons 1 (186–188 kg ha−1) and 3 (147–151 kg ha−1). Based on the responses of sugarcane yield and N uptake to fertilizer reduction in two of the three years, T2 is considered to represent a feasible fertilization practice for farmers. The reduction of the first N fertilizer application reduced the underground amounts of N loads (0–19 kg ha−1). However, application of 0 N in the first fertilization would lead to a substantial reduction in yield in all seasons. Reducing the amount of N in the first application (i.e., replacing T1 with T2) improved N recovery by 9.7–11.9% and reduced N leaching by 13 kg ha−1. These results suggest that halving the amount of N used in the first application can improve N fertilizer use efficiency and reduce N loss to groundwater.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Jacob T. Bushong ◽  
D. Brian Arnall ◽  
William R. Raun

Preplant irrigation can impact fertilizer management in winter wheat. The objective of this study was to evaluate the main and interactive effects of preplant irrigation, N fertilizer application timing, and different N, P, and K fertilizer treatments on grain yield and WUE. Several significant two-way interactions and main effects of all three factors evaluated were observed over four growing seasons for grain yield and WUE. These effects could be described by differences in rainfall and soil moisture content among years. Overall, grain yield and WUE were optimized, if irrigation or adequate soil moisture were available prior to planting. For rain-fed treatments, the timing of N fertilizer application was not as important and could be applied before planting or topdressed without much difference in yield. The application of P fertilizer proved to be beneficial on average years but was not needed in years where above average soil moisture was present. There was no added benefit to applying K fertilizer. In conclusion, N and P fertilizer management practices may need to be altered yearly based on changes in soil moisture from irrigation and/or rainfall.


2014 ◽  
Vol 100 (1) ◽  
pp. 111-120 ◽  
Author(s):  
Ulrike Lebender ◽  
Mehmet Senbayram ◽  
Joachim Lammel ◽  
Hermann Kuhlmann

Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 353 ◽  
Author(s):  
Xu-Peng Zeng ◽  
Kai Zhu ◽  
Jian-Ming Lu ◽  
Yuan Jiang ◽  
Li-Tao Yang ◽  
...  

Nitrogen (N) plays an important role in sugarcane (Saccharum spp. hybrids) growth and development; however, long-term effects of N application levels on cane and sugar production in different sugarcane cultivars under field conditions remain unclear. In this study, we investigate the agronomic, yield, and quality traits in three sugarcane cultivars (GT11, B9, and ROC22) under different N levels (0, 150, and 300 kg/ha urea) from 2015 to 2019. Continuous four-year field experiments of plant and ratoon crops were carried out by using two-factor split-plot design. The results showed that N fertilizer application improved the tillering rate, stalk diameter, plant height, stalk weight, millable stalks/ha, cane yield, sugar yield and juice rate of cane, and the difference between N application and non-N application was significant. The cane yield, millable stalks/ha, juice rate, and juice gravity purity increased with the increase of N application, but the milled juice brix and sucrose % cane decreased with the increase of N application. The sugar yield was the highest at 150 kg/ha urea application, while the cane yield was the highest at 300 kg/ha urea application. Different N fertilizer application levels significantly regulated the activities of glutamic pyruvic transaminase (GPT) and glutamic oxaloacetic transaminase (GOT) and the contents of chlorophyll and nitrate N in plant leaves, which reflected the regulation in nitrogen metabolism and alteration in dry matter production and distribution, cane yield and sugar accumulation in different sugarcane cultivars. During the four-year experiment duration, the cane yield and sugar yield generally showed ROC22 > B9 > GT11. These data suggested that 300 kg/ha urea application was suitable for the plant and first ratoon crops, and 150 kg/ha urea application was suitable for the second and third ratoon crops. Both cane and sugar yields could be the highest in a four-year production cycle under this circumstance.


1997 ◽  
Vol 129 (1) ◽  
pp. 1-12 ◽  
Author(s):  
A. BHOGAL ◽  
S. D. YOUNG ◽  
R. SYLVESTER-BRADLEY ◽  
F. M. O'DONNELL ◽  
R. L. RALPH

In 1977, a four-course rotation was set up at Ropsley (UK) to study crop response to eight rates of nitrogen application (35–265 kg ha−1). This rotation continued until 1990 when continuous winter wheat was introduced. Results from 1978 to 1990 provide an opportunity to study the initial phase of cumulative effects from different rates of N fertilizer application on the recovery of N by cereals and the retention of N in the soil.From 1978 to 1990, considerable variation in the recovery of nitrogen by winter wheat was observed. Neither rainfall nor drainage, as indicators of possible denitrification or leaching losses, provided a useful explanation for this, possibly because of the relatively dry conditions prevailing after spring fertilizer application. There was no evidence of increased soil N fertility, beyond single year residues, as a result of large N applications over the 13-year period.In order to achieve the economic optimum grain yield, it was necessary to use N applications which produced inefficient recovery of N. Thus, greater return of N in crop residues and immobilization at relatively large N applications (>150 kg ha−1) contributed to an observed build-up in soil organic N over the period of study. Plots receiving, on average, 265 kg ha−1 appeared to gain c. 250 kg ha−1 N over control plots (35 kg ha−1) after 13 years of N application. Reducing the N application rate from the economic optimum to a more biologically efficient N rate (156 kg ha−1) was calculated to result in an average yield loss of 0·305 t ha−1 and cause an estimated £17 ha−1 loss in profit.


2016 ◽  
pp. 27-31
Author(s):  
Gerda Diósi ◽  
Péter Sipos

The ecological characteristics and agro-ecological conditions in Hungary provide opportunities for quality wheat production. For the successful wheat production besides the favorable conditions; the proper use of expertise and appropriate cultivation techniques are not negligible. Successful cultivation affected by many factors. To some extent we can affect, influence and convert the abiotic factors. Today, a particularly topical issue is the question of nutrition and that the species’ genetic code can be validated using the appropriate quantity and quality fertilizer. Beyond determining the fertilizer requirements of the winter wheat it is important to align the nutrient to the plant’s nutrient uptake dynamics and to ensure its shared dispensing. In any case, it is important to note the use of autumnal base-fertilizer as complex fertilizer. Hereafter sharing the fertilizer during the growing season with the recommended adequate nitrogen dose.The first top dressing of winter wheat in early spring (the time of tillering) can be made, the second top dressing at the time of stem elongation, and the third top dressing at the end of the blooming can be justified. Determining the rate of fertilizer application depends on the habitat conditions and the specific nutrient needs of plants. In autumn the 1/3 of the planned amount of basic fertilizer should be dispensed (in case of N). During setting our experiment we used 3 doses (0 kg ha-1 N-1 active ingredient; 90 kg ha-1 N-1 active ingredients and 150 kg ha-1 N-1 active ingredient). Application dates beyond the autumn basic fertilization are the following: in one pass in early spring, divided in early spring and the time of run up, early spring and late flowering. In addition to nitrogen the replacement of sulfur gets a prominent role as a result of decreased atmospheric inputs. The proper sulfur supply mainly affects the quality parameters. It influences positively the wheat flour’s measure of value characteristics (gluten properties, volume of bread, dough rheology. In terms of nitrogen doses; the larger amounts (150 kg ha-1 N-1 drug), is the proposed distributed application, while in the case of lower nitrogen (90 kg ha-1 N-1 drug) in a single pass in the early spring can achieve better results. After using sulfur the quality values among the nutritional parameters that can be associated with gluten properties took up higher values than the samples not treated with sulfur.


2016 ◽  
Vol 55 (1) ◽  
pp. 63-73 ◽  
Author(s):  
A. Efretuei ◽  
M. Gooding ◽  
E. White ◽  
J. Spink ◽  
R. Hackett

Abstract The objectives of this work were to determine the effects of initiating application of fertilizer nitrogen (N) to winter wheat at different growth stages (GSs) on grain yield and N use efficiency (NUE). A factorial experiment was carried out in two growing seasons (2011 and 2012) with five timings of first N application (GS 24/26 [tillering], GS 30, GS 31, GS 32 or GS 37) and an unfertilized control, two sowing densities (100 and 400 seeds/m2) and a cattle slurry treatment (with or without slurry). The latter was included to simulate variation in soil N supply (SNS). Delaying the first application of N from the tillering stage until GS 30 had no significant effect on grain yield in either year. Further delaying the initial N application until GS 31 caused a significant yield reduction in 2011, in comparison to GS 30 application, but not in 2012. Differences in efficiency of recovery and use of fertilizer N by the crop among the first three application timings were small. There was no evidence to support alteration in the timing of the first application of N in response to low plant density. Slurry application did not influence SNS, so the interaction between SNS and fertilizer N application timing could not be determined. It is concluded that in order to maximise yield and NUE, the first N application should be applied to winter wheat between late tillering and GS 30 and that delaying the first N until GS 31 can lead to yield reductions compared to the yield obtained with earlier application.


1983 ◽  
Vol 31 (3) ◽  
pp. 211-225 ◽  
Author(s):  
A. Darwinkel

Winter wheat cv. Caribo (1979) or Arminda and Okapi (1980) was provided with an additional N dressing at different stages between tillering and ear emergence after a basal N dose applied at the onset of tillering. The effect of N on ear formation depended greatly on the growth stage at the time of N application. Max. effects on tiller formation and spikelet initiation were achieved when additional N was supplied at the beginning of tillering; on ear number when N was supplied at the onset of stem elongation; on the numbers of fertile spikelets, grains/fertile spikelet and grains/ear when N was applied during stem elongation until flag leaf emergence and on single grain wt. when N was applied at ear emergence. Variations in 1000-grain wt. were small, therefore grain yield/ear as well as yield/unit area was largely determined by grain number. Main shoots outyielded ear-bearing tillers because of a higher grain number. In ear-bearing tillers, grain yield largely depended on grain number, being highest in the older tillers. Grain formation of ear-bearing tillers was more strongly affected by the time of additional N application than that of main shoots. Top-dressings of N applied during stem elongation increased the grain number of ear-bearing tillers considerably, because both the number of fertile spikelets and the grain number/fertile spikelet were higher. In the young late-appeared tillers, the opt. time to apply additional N for grain set shifted to later stages of development. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Sign in / Sign up

Export Citation Format

Share Document