Effect of polyphosphate binding on the chain dynamic of caseins: investigation by differential scanning calorimetry and thermally stimulated currents

1988 ◽  
Vol 55 (3) ◽  
pp. 401-412 ◽  
Author(s):  
Alain Lamure ◽  
Jean-François Pommert ◽  
Alain Klaebe ◽  
Colette Lacabanne ◽  
Jean-Jacques Perie

SummarySamples of caseins having different Ca contents as used in cheese processing were analysed by techniques using differential scanning calorimetry and thermally stimulated currents (TSC) before and after treatment with Na poly-phosphate, a food additive used in the manufacture of processed cheese. These techniques revealed structural changes induced by the salt, and the different types of water molecules associated with the protein are evident. This characterization is in agreement with results obtained by other techniques, particularly X-ray diffraction of proteins. Transmission electron microscopy of the same samples confirmed that the changes observed by TSC were associated with an unravelling of the protein.

1991 ◽  
Vol 230 ◽  
Author(s):  
Toyohiko J. Konno ◽  
Robert Sinclair

AbstractThe crystallization of amorphous Si in a Al/Si multilayer (with a modulation length of about 120Å) was investigated using transmission electron microscopy, differential scanning calorimetry and X-ray diffraction. Amorphous Si was found to crystallize at about 175 °C with the heat of reaction of 11±2(kJ/mol). Al grains grow prior to the nucleation of crystalline Si. The crystalline Si was found to nucleate within the grown Al layers. The incipient crystalline Si initially grows within the Al layer and then spreads through the amorphous Si and other Al layers. Because of extensive intermixing, the original layered structure is destroyed. The Al(111) texture is also enhanced.


2006 ◽  
Vol 514-516 ◽  
pp. 692-696 ◽  
Author(s):  
Rui Jorge C. Silva ◽  
L.A. Matlakhova ◽  
E.C. Pereira ◽  
A.N. Matlakhov ◽  
Sérgio Neves Monteiro ◽  
...  

In the present work a monocrystalline Cu-13.5Al-4Ni (wt.%) alloy with shape memory effect (SME) submitted to thermal cycling inside the critical range was investigated in terms of number of cycles and resulting structural changes. Attention was paid to the structural changes associated with reversible β1↔γ’1 martensite transformation. The monocrystalline Cu-Al-Ni alloy was produced in Russia, according to a specific technology. The structural characteristic of the alloys was studied through optical microscopy and X-ray diffraction methods using Cu-Kα radiation. Differential scanning calorimetry permitted the determination of the temperature range as well as a thermal effect due to the β1↔γ’1 martensitic reversible transformations, before and after 100, 200 and 300 thermal cycles.


2008 ◽  
Vol 23 (2) ◽  
pp. 565-569 ◽  
Author(s):  
Runrun Duan ◽  
Michael S. Haluska ◽  
Robert F. Speyer

Compositions of xBiLaO3–(1 − x) PbTiO3 over the range 0 ≤ x ≤ 0.225 were calcined and sintered. The dielectric constant with temperature and differential scanning calorimetry measurements were in excellent agreement with respect to Curie-like tetragonal to cubic transformations starting at 495 °C for pure PbTiO3, shifting to lower temperatures with increasing x. For compositions of x ≥ 0.05, a second higher-temperature (∼600 °C) endotherm, and matching dielectric anomaly, were consistently observed, for which there were no structural changes indicated by hot-stage x-ray diffraction. This transformation was speculated to be based on a thermally induced desegregation of B-site cations.


2008 ◽  
Vol 23 (11) ◽  
pp. 2880-2885 ◽  
Author(s):  
Herbert Willmann ◽  
Paul H. Mayrhofer ◽  
Lars Hultman ◽  
Christian Mitterer

Microstructure and hardness evolution of arc-evaporated single-phase cubic Al0.56Cr0.44N and Al0.68Cr0.32N coatings have been investigated after thermal treatment in Ar atmosphere. Based on a combination of differential scanning calorimetry and x-ray diffraction studies, we can conclude that Al0.56Cr0.44N undergoes only small structural changes without any decomposition for annealing temperatures Ta ⩽ 900 °C. Consequently, the hardness decreases only marginally from the as-deposited value of 30.0 ± 1.1 GPa to 29.4 ± 0.9 GPa with Ta increasing to 900 °C, respectively. The film with higher Al content (Al0.68Cr0.32N) exhibits formation of hexagonal (h) AlN at Ta ⩾ 700 °C, which occurs preferably at grain boundaries as identified by analytical transmission electron microscopy. Hence, the hardness increases from the as-deposited value of 30.1 ± 1.3 GPa to 31.6 ± 1.4 GPa with Ta = 725 °C. At higher temperatures, where the size and volume fraction of the h-AlN phase increases, the hardness decreases to 27.5 ± 1.0 GPa with Ta = 900 °C.


2009 ◽  
Vol 24 (1) ◽  
pp. 39-49 ◽  
Author(s):  
J. Zhang ◽  
B. Liu ◽  
J.Y. Wang ◽  
Y.C. Zhou

Transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and x-ray diffraction (XRD) investigations were conducted on the hot-pressed Ti2SnC bulk ceramic. Microstructure features of bulk Ti2SnC ceramic were characterized by using TEM, and a needle-shaped β-Sn precipitation was observed inside Ti2SnC grains with the orientation relationship: (0001) Ti2SnC // (200) Sn and Ti2SnC // [001] Sn. With the combination of DSC and XRD analyses, the precipitation of metallic Sn was demonstrated to be a thermal stress-induced process during the cooling procedure. The reheating temperature, even as low as 400 °C, could trigger the precipitation of Sn from Ti2SnC, which indicated the low-temperature instability of Ti2SnC. A substoichiometry Ti2SnxC formed after depletion of Sn from ternary Ti2SnC phase. Under electron beam irradiation, metallic Sn was observed diffusing back into Ti2SnxC. Furthermore, a new Ti7SnC6 phase with the lattice constants of a = 0.32 and c = 4.1 nm was identified and added in the Ti-Sn-C ternary system.


2008 ◽  
Vol 8 (3) ◽  
pp. 1417-1421 ◽  
Author(s):  
Zifei Peng ◽  
Wei Jiang ◽  
Heng Liu

Tungsten-doped vanadium dioxide (VO2) nanopowders were prepared by thermolysis of (NH4)5[(VO)6(CO3)4(OH)9] · 10H2O at low temperature, with active white powdery tungstic acid used as a substitutional dopant. The composition and microstructure of the powders were examined by X-ray diffraction, transmission electron microscope, and differential scanning calorimetry. The change in electrical resistance due to the S–M transition was measured from 0 to 150 °C by the four-probe method. Hysteresis loops and differential scanning calorimetry analysis of the samples indicated that the phase-transition temperature of VO2 nanopowders was 67.15 °C. For tungstendoped VO2 nanopowders, the temperature was reduced to 26.46 °C. After sintering the nanopowders, Tc rose from 26.46 °C to 34.85 °C with the sizes increasing to the bulk. A significant direct correlation between particle size and Tc was confirmed. The results indicated that white powdery tungstic acid is exceptionally effective as a dopant for reducing transition temperature.


Author(s):  
Cleiton André Comelli ◽  
Richard Davies ◽  
HenkJan van der Pol ◽  
Oana Ghita

AbstractThe heating and extrusion process in fused filament fabrication (FFF) is significantly shorter than the conventional extrusion process where longer heating times and significant pressure are applied. For this reason, it is important to understand whether the crystal history of the feedstock is fully erased through the FFF process and whether the FFF process can be tailored further by engineering the crystallization of the feedstock filaments. In this context, a methodology for evaluating the influence of morphology and mechanical properties on different feedstock and extruded filaments is proposed. Filaments with three different PEEK 450G crystalline structures (standard crystallinity, drawn filament and amorphous filament) were selected and evaluated, before and after free extrusion. The resulting morphology, crystallinity and mechanical properties of the extruded filaments were compared against the feedstock properties. X-ray diffraction (XRD), transmission electron microscopy (TEM), differential and fast scanning calorimetry (DSC/FDSC) and tensile test were the techniques used to evaluate the materials. The results showed clear differences in the properties of the feedstock materials, while the analysis of the extruded filaments points to a homogenization of the resulting material producing mostly similar mechanical properties. However, the use of the drawn filament highlighted a statistically significant improvement in crystallinity and mechanical performance, especially in strain values. This conclusion suggests the innovative possibility of improving the quality of manufactured parts by tailoring the microstructure of the feedstock material used in the FFF process. Graphical abstract


1997 ◽  
Vol 12 (2) ◽  
pp. 402-406 ◽  
Author(s):  
X. Cao ◽  
R. Prozorov ◽  
Yu. Koltypin ◽  
G. Kataby ◽  
I. Felner ◽  
...  

A method for the preparation of pure amorphous Fe2O3 powder with particle size of 25 nm is reported in this article. Pure amorphous Fe2O3 can be simply synthesized by the sonication of neat Fe(CO)5 or its solution in decalin under an air atmosphere. The Fe2O3 nanoparticles are converted to crystalline Fe3O4 nanoparticles when heated to 420 °C under vacuum or when heated to the same temperature under a nitrogen atmosphere. The crystalline Fe3O4 nanoparticles were characterized by x-ray diffraction and M¨ossbauer spectroscopy. The Fe2O3 amorphous nanoparticles were examined by Transmission Electron Micrography (TEM), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), and Quantum Design SQUID magnetization measurements. The magnetization of pure amorphous Fe2O3 at room temperature is very low (<1.5 emu/g) and it crystallizes at 268 °C.


2001 ◽  
Vol 16 (12) ◽  
pp. 3485-3495 ◽  
Author(s):  
Xinghang Zhang ◽  
Haiyan Wang ◽  
Magdy Kassem ◽  
Jagdish Narayan ◽  
Carl C. Koch

Nanocrystalline Zn was prepared by cryomilling (mechanical attrition at liquid nitrogen temperature). Differential scanning calorimetry (DSC), x-ray diffraction, and transmission electron microscopy were used to study the structural changes and grain size distribution with milling time and subsequent annealing. Maxima in both stored enthalpy (for the low-temperature DSC peak) and lattice strain on the Zn basal planes were observed at the same milling time. Dislocation density on the basal planes is proposed as a major source for lattice strain and the measured stored enthalpy. The released enthalpy that might be due to grain growth is very small.


2015 ◽  
Vol 1 (10) ◽  
pp. 359
Author(s):  
Mohamed Yousef Farag El Zayat

AbstractAiming to improve the inferior properties of polyvinyl chloride polymer, (BaTiO3)x(PVC)100-x composite samples were prepared and investigated. The structural changes of the composite (BaTiO3)x(PVC)100-x were studied as a function of BT content using FTIR, XRD and DSC measurements. Attention is paid to the tetragonality changes during composition changes.It was found that the hindrance to the PVC crystallization becomes less and less serious with the increase of BT ratio in the composite. This behavior could be attributed to the interaction between Ba+2 ions and Chlorine in the polymer. The FTIR spectra indicate a clear interaction between PVC and BaTiO3 particles as is concluded from XRD results.The Scherrer formula was used to estimate the grain size for the included BT in the (BT)x (PVC)100x composite samples. The composite samples show abnormally small tetragonality for its BT content less than unity (?/a < 1). It seems that in (BaTiO3)x(PVC)100-x composite samples, the stress that stabilized the tetragonal phase of the core regions of BT decreased, leading to lower tetragonality (c/a ratio). It seems that Tg of the composite samples increases with the increase of its BT content. Also DSC results reveal the increase of crystallization with the increase of BT content in the composite.


Sign in / Sign up

Export Citation Format

Share Document