Chymotrypsin selectively digests β-lactoglobulin in whey protein isolate away from enzyme optimal conditions: Potential for native α-lactalbumin purification

2012 ◽  
Vol 80 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Katarina Lisak ◽  
Jose Toro-Sierra ◽  
Ulrich Kulozik ◽  
Rajka Božanić ◽  
Seronei Chelulei Cheison

The present study examines the resistance of the α-lactalbumin to α-chymotrypsin (EC 3.4.21.1) digestion under various experimental conditions. Whey protein isolate (WPI) was hydrolysed using randomised hydrolysis conditions (5 and 10% of WPI; pH 7·0, 7·8 and 8·5; temperature 25, 37 and 50 °C; enzyme-to-substrate ratio, E/S, of 0·1%, 0·5 and 1%). Reversed-phase high performance liquid chromatography (RP-HPLC) was used to analyse residual proteins. Heat, pH adjustment and two inhibitors (Bowman–Birk inhibitor and trypsin inhibitor from chicken egg white) were used to stop the enzyme reaction. While operating outside of the enzyme optimum it was observed that at pH 8·5 selective hydrolysis of β-lactoglobulin was improved because of a dimer-to-monomer transition while α-la remained relatively resistant. The best conditions for the recovery of native and pure α-la were at 25 °C, pH 8·5, 1% E/S ratio, 5% WPI (w/v) while the enzyme was inhibited using Bowman–Birk inhibitor with around 81% of original α-la in WPI was recovered with no more β-lg. Operating conditions for hydrolysis away from the chymotrypsin optimum conditions offers a great potential for selective WPI hydrolysis, and removal, of β-lg with production of whey protein concentrates containing low or no β-lg and pure native α-la. This method also offers the possibility for production of β-lg-depleted milk products for sensitive populations.

2019 ◽  
Vol 86 (1) ◽  
pp. 114-119
Author(s):  
Katarina Lisak Jakopović ◽  
Seronei Chelulei Cheison ◽  
Ulrich Kulozik ◽  
Rajka Božanić

AbstractThe experiments reported in this research paper examine the potential of digestion using acidic enzymes Protease A and Protease M to selectively hydrolyse α-lactalbumin (α-La) whilst leaving β-lactoglobulin (β-Lg) relatively intact. Both enzymes were compared with pepsin hydrolysis since its selectivity to different whey proteins is known. Analysis of the hydrolysis environment showed that the pH and temperature play a significant role in determining the best conditions for achievement of hydrolysis, irrespective of which enzyme was used. Whey protein isolate (WPI) was hydrolysed using pepsin, Acid Protease A and Protease M by randomized hydrolysis conditions. Reversed-phase high performance liquid chromatography was used to analyse residual proteins. Regarding enzyme selectivity under various milieu conditions, all three enzymes showed similarities in the reaction progress and their potential for β-Lg isolation.


2020 ◽  
Vol 21 (15) ◽  
pp. 5544
Author(s):  
Rebecca Rabe ◽  
Ute Hempel ◽  
Laurine Martocq ◽  
Julia K. Keppler ◽  
Jenny Aveyard ◽  
...  

To improve the integration of a biomaterial with surrounding tissue, its surface properties may be modified by adsorption of biomacromolecules, e.g., fibrils. Whey protein isolate (WPI), a dairy industry by-product, supports osteoblastic cell growth. WPI’s main component, β-lactoglobulin, forms fibrils in acidic solutions. In this study, aiming to develop coatings for biomaterials for bone contact, substrates were coated with WPI fibrils obtained at pH 2 or 3.5. Importantly, WPI fibrils coatings withstood autoclave sterilization and appeared to promote spreading and differentiation of human bone marrow stromal cells (hBMSC). In the future, WPI fibrils coatings could facilitate immobilization of biomolecules with growth stimulating or antimicrobial properties.


2011 ◽  
Vol 312-315 ◽  
pp. 1143-1148
Author(s):  
M. Vázquez da Silva ◽  
João M.P.Q. Delgado

The physical and structural properties of cold-set whey protein isolate gels are largely influenced by the protein concentration and the denaturation conditions, namely temperature and holding time. In this work, we systematically varied the protein concentration, the temperature and holding time of denaturation in order to screen their impact on the resulting heat denatured whey protein isolate (HD-WPI) solution viscosity and gel elasticity. The gelation of the HD-WPI solutions was induced, at room temperature, through the addition of magnesium chloride. Based on the assumption that solution turbidity is associated with light scattered by protein aggregates, an aggregate concentration was computed for the HD-WPI solutions. For all experimental conditions, HD-WPI solution viscosities and gels Young modulus data fall, respectively, on two single curves when plotted against the computed aggregates concentration. Three concentration regimes corresponding to non gelling solutions, weak gels and strong gels could be identified. In this study was verified that cold-set gels produced upon addition of Mg2+ had a large spectrum of elastic properties.


Sign in / Sign up

Export Citation Format

Share Document