Finite-amplitude convection in the presence of finitely conducting boundaries

2001 ◽  
Vol 432 ◽  
pp. 351-367 ◽  
Author(s):  
M. WESTERBURG ◽  
F. H. BUSSE

Finite-amplitude convection in the form of rolls and their stability with respect to infinitesimal disturbances is investigated in the case of boundaries of the horizontal fluid layer which exhibit a thermal conductivity comparable to that of the fluid. It is found that even when rolls represent the preferred mode at the onset of convection a transition to square cells may occur at slightly supercritical Rayleigh numbers. The phenomenon of inertial convection in low Prandtl number fluids appears to become more pronounced as the conductivity of the boundaries is reduced. Modulated convection rolls have also been found as solutions of the problem. But they appear to be unstable in general. Experimental observations have been made and are found in general agreement with the theoretical predictions.

1979 ◽  
Vol 91 (2) ◽  
pp. 319-335 ◽  
Author(s):  
F. H. Busse ◽  
R. M. Clever

The instabilities of two-dimensional convection rolls in a horizontal fluid layer heated from below are investigated in the case when the Prandtl number is seven or lower. Two new mechanisms of instability are described theoretically as well as experimentally. The knot instability causes the transition to spoke-pattern convection at higher Rayleigh numbers while the skewed varicose instability accomplishes a change to larger horizontal wavelengths of the convection rolls. Both instabilities disappear in the limits of small and large Prandtl number. Although the experimental methods fail in realizing closely the infinitely conducting boundaries assumed in the theory, the observations agree in all qualitative aspects with the theoretical predictions.


1975 ◽  
Vol 71 (1) ◽  
pp. 193-206 ◽  
Author(s):  
F. H. Busse

The interaction between convection in a horizontal fluid layer heated from below and an ambient vertical magnetic field is considered. The analysis is based on the Boussinesq equations for two-dimensional convection rolls and the assumption that the amplitude A of the convection and the Chandrasekhar number Q are small. It is found that the magnetic energy is amplified by a factor of order R½m, where Rm is the magnetic Reynolds number. The ratio between the magnetic and kinetic energies can reach values much larger than unity. Although the magnetic field always inhibits convection, this influence decreases with increasing amplitude of convection. Thus finite amplitude onset of steady convection becomes possible at Rayleigh numbers considerably below the values predicted by linear theory.


1992 ◽  
Vol 06 (16n17) ◽  
pp. 1055-1061
Author(s):  
GOVINDAN RAJESH ◽  
SUPREETI DAS ◽  
JAYANTA K. BHATTACHARJEE

A Lorenz-like model due to Veronis for onset of convection in a rotating fluid layer is analysed for Rayleigh numbers higher than the point at which stationary convection occurs. The most outstanding feature is that for Taylor numbers above a critical value, the Hopf bifurcation does lead to a finite amplitude stable limit cycle via a hysteretic transition. This limit cycle undergoes a sequence of period doubling bifurcations to form a Feigenbaum attractor which then makes a transition to the Lorenz-like attractor.


1971 ◽  
Vol 47 (2) ◽  
pp. 305-320 ◽  
Author(s):  
F. H. Busse ◽  
J. A. Whitehead

An experiment on the stability of convection rolls with varying wave-number is described in extension of the earlier work by Chen & Whitehead (1968). The results agree with the theoretical predictions by Busse (1967a) and show two distinct types of instability in the form of non-oscillatory disturbances. The ‘zigzag instability’ corresponds to a bending of the original rolls; in the ‘cross-roll instability’ rolls emerge at right angles to the original rolls. At Rayleigh numbers above 23,000 rolls are unstable for all wave-numbers and are replaced by a three-dimensional form of stationary convection for which the name ‘bimodal convection’ is proposed.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
A. V. Kuznetsov ◽  
D. A. Nield

In this paper, we investigated the onset of natural convection in a horizontal fluid layer due to nonuniform internal heat generation, which is relevant to a number of geophysical situations. We investigated a number of special cases, which we believe are paradigmatic. Those include linear, quadratic, concentrated, and exponential source strength distributions. Our results show that those situations that lead to a reduction/increase in the size of the region in which the basic temperature gradient is destabilizing lead to an increase/decrease in stability.


1995 ◽  
Vol 117 (2) ◽  
pp. 329-333 ◽  
Author(s):  
J. Tang ◽  
H. H. Bau

Using linear stability theory and numerical simulations, we demonstrate that the critical Rayleigh number for bifurcation from the no-motion (conduction) state to the motion state in the Rayleigh–Be´nard problem of an infinite fluid layer heated from below with Joule heating and cooled from above can be significantly increased through the use of feedback control strategies effecting small perturbations in the boundary data. The bottom of the layer is heated by a network of heaters whose power supply is modulated in proportion to the deviations of the temperatures at various locations in the fluid from the conductive, no-motion temperatures. Similar control strategies can also be used to induce complicated, time-dependent flows at relatively low Rayleigh numbers.


1968 ◽  
Vol 34 (2) ◽  
pp. 315-336 ◽  
Author(s):  
George Veronis

A stabilizing gradient of solute inhibits the onset of convection in a fluid which is subjected to an adverse temperature gradient. Furthermore, the onset of instability may occur as an oscillatory motion because of the stabilizing effect of the solute. These results are obtained from linear stability theory which is reviewed briefly in the following paper before finite-amplitude results for two-dimensional flows are considered. It is found that a finite-amplitude instability may occur first for fluids with a Prandtl number somewhat smaller than unity. When the Prandtl number is equal to unity or greater, instability first sets in as an oscillatory motion which subsequently becomes unstable to disturbances which lead to steady, convecting cellular motions with larger heat flux. A solute Rayleigh number, Rs, is defined with the stabilizing solute gradient replacing the destabilizing temperature gradient in the thermal Rayleigh number. When Rs is large compared with the critical Rayleigh number of ordinary Bénard convection, the value of the Rayleigh number at which instability to finite-amplitude steady modes can set in approaches the value of Rs. Hence, asymptotically this type of instability is established when the fluid is marginally stratified. Also, as Rs → ∞ an effective diffusion coefficient, Kρ, is defined as the ratio of the vertical density flux to the density gradient evaluated at the boundary and it is found that κρ = √(κκs) where κ, κs are the diffusion coefficients for temperature and solute respectively. A study is made of the oscillatory behaviour of the fluid when the oscillations have finite amplitudes; the periods of the oscillations are found to increase with amplitude. The horizontally averaged density gradients change sign with height in the oscillating flows. Stably stratified fluid exists near the boundaries and unstably stratified fluid occupies the mid-regions for most of the oscillatory cycle. Thus the step-like behaviour of the density field which has been observed experimentally for time-dependent flows is encountered here numerically.


1958 ◽  
Vol 4 (3) ◽  
pp. 225-260 ◽  
Author(s):  
W. V. R. Malkus ◽  
G. Veronis

When a layer of fluid is heated uniformly from below and cooled from above, a cellular regime of steady convection is set up at values of the Rayleigh number exceeding a critical value. A method is presented here to determine the form and amplitude of this convection. The non-linear equations describing the fields of motion and temperature are expanded in a sequence of inhomogeneous linear equations dependent upon the solutions of the linear stability problem. We find that there are an infinite number of steady-state finite amplitude solutions (having different horizontal plan-forms) which formally satisfy these equations. A criterion for ‘relative stability’ is deduced which selects as the realized solution that one which has the maximum mean-square temperature gradient. Particular conclusions are that for a large Prandtl number the amplitude of the convection is determined primarily by the distortion of the distribution of mean temperature and only secondarily by the self-distortion of the disturbance, and that when the Prandtl number is less than unity self-distortion plays the dominant role in amplitude determination. The initial heat transport due to convection depends linearly on the Rayleigh number; the heat transport at higher Rayleigh numbers departs only slightly from this linear dependence. Square horizontal plan-forms are preferred to hexagonal plan-forms in ordinary fluids with symmetric boundary conditions. The proposed finite amplitude method is applicable to any model of shear flow or convection with a soluble stability problem.


A recent study by Cross et al . (1980) has described a class of finite-amplitude phase-winding solutions of the problem of two-dimensional Rayleigh-Bénard convection in a shallow fluid layer of aspect ratio 2 L (≫ 1) confined laterally by rigid side-walls. These solutions arise at Rayleigh numbers R = R 0 + O ( L -1 ) where R 0 is the critical Rayleigh number for the corresponding infinite layer. Nonlinear solutions of constant phase exist for Rayleigh numbers R = R 0 + O ( L -2 ) but of these only the two that bifurcate at the lowest value of R are stable to two-dimensional linearized disturbances in this range (Daniels 1978). In the present paper one set of the class of phase-winding solutions is found to be stable to two-dimensional disturbances. For certain values of the Prandtl number of the fluid and for stress-free horizontal boundaries the results predict that to preserve stability there must be a continual readjustment of the roll pattern as the Rayleigh number is raised, with a corresponding increase in wavelength proportional to R - R 0 . These solutions also exhibit hysteresis as the Rayleigh number is raised and lowered. For other values of the Prandtl number the number of rolls remains unchanged as the Rayleigh number is raised, and the wavelength remains close to its critical value. It is proposed that the complete evolution of the flow pattern from a static state must take place on a number of different time scales of which t = O(( R - R 0 ) -1 ) and t = O(( R - R 0 ) -2 ) are the most significant. When t = O(( R - R 0 ) -1 ) the amplitude of convection rises from zero to its steady-state value, but the final lateral positioning of the rolls is only completed on the much longer time scale t = O(( R - R 0 ) -2 ).


1999 ◽  
Author(s):  
Patrick H. Oosthuizen

Abstract Natural convective heat transfer from a heated horizontal surface directly exposed to a liquid into which vertical fins, attached to a cooled horizontal surface, project vertically downwards has been numerically studied. It has been assumed that the flow is steady, laminar and two-dimensional. The governing equations have been written in terms of dimensionless variables and have been solved using the finite element procedure. The solution has the following parameters: the Rayleigh number, the Prandtl number, the dimensionless half-width i.e. the ratio of the half-distance between the fins to the liquid depth, the dimensionless gap between the bottom of the fin and the lower surface, and the ratio of the thermal conductivity of the fin material to that of the liquid. Because of the application being considered, the Prandtl number has been taken as 5. Solutions have been obtained for Rayleigh numbers of between 10 and 1,000,000 for dimensionless half-widths of between 1 and 0.2 for thermal conductivity ratios of 20, 10 and 4 for a range of dimensionless fin gaps and widths.


Sign in / Sign up

Export Citation Format

Share Document