Dynamics of axisymmetric bodies rising along a zigzag path

2008 ◽  
Vol 606 ◽  
pp. 209-223 ◽  
Author(s):  
PEDRO C. FERNANDES ◽  
PATRICIA ERN ◽  
FRÉDÉRIC RISSO ◽  
JACQUES MAGNAUDET

The forces and torques governing the planar zigzag motion of thick, slightly buoyant disks rising freely in a liquid at rest are determined by applying the generalized Kirchhoff equations to experimental measurements of the body motion performed for a single body-to-fluid density ratio ρs/ρf ≈ 1. The evolution of the amplitude and phase of the various contributions is discussed as a function of the two control parameters, i.e. the body aspect ratio (the diameter-to-thickness ratio χ = d/h ranges from 2 to 10) and the Reynolds number (100 < Re < 330), Re being based on the rise velocity and diameter of the body. The body oscillatory behaviour is found to be governed by the force balance along the transverse direction and the torque balance. In the transverse direction, the wake-induced force is mainly balanced by two forces that depend on the body inclination, i.e. the inertia force generated by the body rotation and the transverse component of the buoyancy force. The torque balance is dominated by the wake-induced torque and the restoring added-mass torque generated by the transverse velocity component. The results show a major influence of the aspect ratio on the relative magnitude and phase of the various contributions to the hydrodynamic loads. The vortical transverse force scales as fo = (ρf − ρs)ghπd2 whereas the vortical torque involves two contributions, one scaling as fod and the other as f1d with f1 = χfo. Using this normalization, the amplitudes and phases of the vortical loads are made independent of the aspect ratio, the amplitudes evolving as (Re/Rec1 − 1)1/2, where Rec1 is the threshold of the first instability of the wake behind the corresponding body held fixed in a uniform stream.

2012 ◽  
Vol 707 ◽  
pp. 24-36 ◽  
Author(s):  
David Fabre ◽  
Joël Tchoufag ◽  
Jacques Magnaudet

AbstractWe consider the steady motion of disks of various thicknesses in a weakly viscous flow, in the case where the angle of incidence $\ensuremath{\alpha} $ (defined as that between the disk axis and its velocity) is small. We derive the structure of the steady flow past the body and the associated hydrodynamic force and torque through a weakly nonlinear expansion of the flow with respect to $\ensuremath{\alpha} $. When buoyancy drives the body motion, we obtain a solution corresponding to an oblique path with a non-zero incidence by requiring the torque to vanish and the hydrodynamic and net buoyancy forces to balance each other. This oblique solution is shown to arise through a bifurcation at a critical Reynolds number ${\mathit{Re}}^{\mathit{SO}} $ which does not depend upon the body-to-fluid density ratio and is distinct from the critical Reynolds number ${\mathit{Re}}^{\mathit{SS}} $ corresponding to the steady bifurcation of the flow past the body held fixed with $\ensuremath{\alpha} = 0$. We then apply the same approach to the related problem of a sphere that weakly rotates about an axis perpendicular to its path and show that an oblique path sets in at a critical Reynolds number ${\mathit{Re}}^{\mathit{SO}} $ slightly lower than ${\mathit{Re}}^{\mathit{SS}} $, in agreement with available numerical studies.


2012 ◽  
Vol 698 ◽  
pp. 73-92 ◽  
Author(s):  
C. T. Wu ◽  
F.-L. Yang ◽  
D. L. Young

AbstractThe Lagally theorem describes the unsteady hydrodynamic force on a rigid body exhibiting arbitrary motion in an inviscid and incompressible fluid by the properties of the singularities employed to generate the flow and the body motion and to meet the boundary condition. So far, only sources and dipoles have been considered, and the present work extends the theorem to include free vortices in a two-dimensional flow. The present extension is validated by reproducing the system dynamics or the force evolution of three literature problems: (i) a free cylinder interacting with a free vortex; (ii) the moving Föppl problem; and (iii) a cylinder in constant normal approach to a fixed identical cylinder. This work further extends the bifurcation analysis on the moving Föppl problem by including the solid-to-liquid density ratio as a new parameter, in addition to the system total impulse and the vortex strength. We then apply the theorem to the problem where a moving Föppl system is made to approach a fixed or a free neutrally buoyant target cylinder of identical size from far away. The force developed on each cylinder is examined with respect to the vortex pair configuration and the target mobility. When approaching a fixed target, a greater force is developed if the vortex pair has stronger circulation and larger structure. The mobility of the target cylinder, however, can modify the hydrodynamic force by reducing its magnitude and reversing the force ordering with respect to the vortex pair configuration found for the case with fixed target. Possible mechanisms for such a change of force nature are given based on the currently derived equation of motion.


2007 ◽  
Vol 573 ◽  
pp. 479-502 ◽  
Author(s):  
PEDRO C. FERNANDES ◽  
FRÉDÉRIC RISSO ◽  
PATRICIA ERN ◽  
JACQUES MAGNAUDET

This paper reports on an experimental study of the motion of freely rising axisym- metric rigid bodies in a low-viscosity fluid. We consider flat cylinders with height h smaller than the diameter d and density ρb close to the density ρf of the fluid. We have investigated the role of the Reynolds number based on the mean rise velocity um in the range 80 ≤ Re = umd/ν ≤ 330 and that of the aspect ratio in the range 1.5 ≤ χ = d/h ≤ 20. Beyond a critical Reynolds number, Rec, which depends on the aspect ratio, both the body velocity and the orientation start to oscillate periodically. The body motion is observed to be essentially two-dimensional. Its description is particularly simple in the coordinate system rotating with the body and having its origin fixed in the laboratory; the axial velocity is then found to be constant whereas the rotation and the lateral velocity are described well by two harmonic functions of time having the same angular frequency, ω. In parallel, direct numerical simulations of the flow around fixed bodies were carried out. They allowed us to determine (i) the threshold, Recf1(χ), of the primary regular bifurcation that causes the breaking of the axial symmetry of the wake as well as (ii) the threshold, Recf2(χ), and frequency, ωf, of the secondary Hopf bifurcation leading to wake oscillations. As χ increases, i.e. the body becomes thinner, the critical Reynolds numbers, Recf1 and Recf2, decrease. Introducing a Reynolds number Re* based on the velocity in the recirculating wake makes it possible to obtain thresholds $\hbox{\it Re}^*_{cf1}$ and $\hbox{\it Re}^*_{cf2}$ that are independent of χ. Comparison with fixed bodies allowed us to clarify the role of the body shape. The oscillations of thick moving bodies (χ < 6) are essentially triggered by the wake instability observed for a fixed body: Rec(χ) is equal to Recf1(χ) and ω is close to ωf. However, in the range 6 ≤ χ ≤ 10 the flow corrections induced by the translation and rotation of freely moving bodies are found to be able to delay the onset of wake oscillations, causing Rec to increase strongly with χ. An analysis of the evolution of the parameters characterizing the motion in the rotating frame reveals that the constant axial velocity scales with the gravitational velocity based on the body thickness, $\sqrt{((\rho_f-\rho_b)/\rho_f)\,gh}$, while the relevant length and velocity scales for the oscillations are the body diameter d and the gravitational velocity based on d, $\sqrt{((\rho_f-\rho_b)/\rho_f)\,gd}$, respectively. Using this scaling, the dimensionless amplitudes and frequency of the body's oscillations are found to depend only on the modified Reynolds number, Re*; they no longer depend on the body shape.


1993 ◽  
Vol 115 (2) ◽  
pp. 91-104 ◽  
Author(s):  
L. Foulhoux ◽  
M. M. Bernitsas

Complete expressions are derived for the inertia forces and moments acting on a small body in a six-degree-of-freedom motion in a three-dimensional unsteady flow in an unbounded ideal fluid. The far-field approximation of the body motion is represented by a series of multipoles located at the origin of the body. Unsteady terms are expanded in a dual series to the multipole series. Lagally integrals are expressed in terms of multipoles as well, by using Legendre polynomial expansions. New inertia force expressions are derived by truncating the multipole series after the quadrupoles. Corresponding terms for moments are also developed. The derived formulas are still compact enough for engineering applications. Many practical problems involving fixed and oscillating cylinders, piles, and risers are studied numerically. Comparisons to the Morison equation formulation prove that the nonlinear convective terms are not negligible in multidimensional relative flows.


Author(s):  
Jialei Song ◽  
Yong Zhong ◽  
Ruxu Du ◽  
Ling Yin ◽  
Yang Ding

In this paper, we investigate the hydrodynamics of swimmers with three caudal fins: a round one corresponding to snakehead fish ( Channidae), an indented one corresponding to saithe ( Pollachius virens), and a lunate one corresponding to tuna ( Thunnus thynnus). A direct numerical simulation (DNS) approach with a self-propelled fish model was adopted. The simulation results show that the caudal fin transitions from a pushing/suction combined propulsive mechanism to a suction-dominated propulsive mechanism with increasing aspect ratio ( AR). Interestingly, different from a previous finding that suction-based propulsion leads to high efficiency in animal swimming, this study shows that the utilization of suction-based propulsion by a high- AR caudal fin reduces swimming efficiency. Therefore, the suction-based propulsive mechanism does not necessarily lead to high efficiency, while other factors might play a role. Further analysis shows that the large lateral momentum transferred to the flow due to the high depth of the high- AR caudal fin leads to the lowest efficiency despite the most significant suction.


Author(s):  
Johan Roenby ◽  
Hassan Aref

The model of body–vortex interactions, where the fluid flow is planar, ideal and unbounded, and the vortex is a point vortex, is studied. The body may have a constant circulation around it. The governing equations for the general case of a freely moving body of arbitrary shape and mass density and an arbitrary number of point vortices are presented. The case of a body and a single vortex is then investigated numerically in detail. In this paper, the body is a homogeneous, elliptical cylinder. For large body–vortex separations, the system behaves much like a vortex pair regardless of body shape. The case of a circle is integrable. As the body is made slightly elliptic, a chaotic region grows from an unstable relative equilibrium of the circle-vortex case. The case of a cylindrical body of any shape moving in fluid otherwise at rest is also integrable. A second transition to chaos arises from the limit between rocking and tumbling motion of the body known in this case. In both instances, the chaos may be detected both in the body motion and in the vortex motion. The effect of increasing body mass at a fixed body shape is to damp the chaos.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hanjun Ryu ◽  
Hyun-moon Park ◽  
Moo-Kang Kim ◽  
Bosung Kim ◽  
Hyoun Seok Myoung ◽  
...  

AbstractSelf-powered implantable devices have the potential to extend device operation time inside the body and reduce the necessity for high-risk repeated surgery. Without the technological innovation of in vivo energy harvesters driven by biomechanical energy, energy harvesters are insufficient and inconvenient to power titanium-packaged implantable medical devices. Here, we report on a commercial coin battery-sized high-performance inertia-driven triboelectric nanogenerator (I-TENG) based on body motion and gravity. We demonstrate that the enclosed five-stacked I-TENG converts mechanical energy into electricity at 4.9 μW/cm3 (root-mean-square output). In a preclinical test, we show that the device successfully harvests energy using real-time output voltage data monitored via Bluetooth and demonstrate the ability to charge a lithium-ion battery. Furthermore, we successfully integrate a cardiac pacemaker with the I-TENG, and confirm the ventricle pacing and sensing operation mode of the self-rechargeable cardiac pacemaker system. This proof-of-concept device may lead to the development of new self-rechargeable implantable medical devices.


Author(s):  
Minglu Chen ◽  
Shan Huang ◽  
Nigel Baltrop ◽  
Ji Chunyan ◽  
Liangbi Li

Mooring line damping plays an important role to the body motion of moored floating platforms. Meanwhile, it can also make contributions to optimize the mooring line system. Accurate assessment of mooring line damping is thus an essential issue for offshore structure design. However, it is difficult to determine the mooring line damping based on theoretical methods. This study considers the parameters which have impact on mooring-induced damping. In the paper, applying Morison formula to calculate the drag and initial force on the mooring line, its dynamic response is computed in the time domain. The energy dissipation of the mooring line due to the viscosity was used to calculate mooring-induced damping. A mooring line is performed with low-frequency oscillation only, the low-frequency oscillation superimposed with regular and irregular wave-frequency motions. In addition, the influences of current velocity, mooring line pretension and different water depths are taken into account.


2021 ◽  
Author(s):  
Yiyu Chen ◽  
Abhinav Pandey ◽  
Zhiwei Deng ◽  
Anthony Nguyen ◽  
Ruiqi Wang ◽  
...  

Abstract The global COVID-19 pandemic has inevitably made disinfection a daily routine to ensure the safety of public and private spaces. However, the existing disinfection procedures are time-consuming and require intensive human labor to apply chemical-based disinfectant onto contaminated surfaces. In this paper, a robot disinfection system is presented to increase the automation of the disinfection task to assist humans in performing routine disinfection safely and efficiently. This paper presents a semi-autonomous quadruped robot called LASER-D for performing disinfection in cluttered environments. The robot is equipped with a spray-based disinfection system and leverages the body motion to control the spray action without an extra stabilization mechanism. The spraying unit is mounted on the robot’s back and controlled by the robot computer. The control architecture is designed based on force control, resulting in navigating rough terrains and the flexibility in controlling the body motion during standing and walking for the disinfection task. The robot also uses the vision system to improve localization and maintain desired distance to the disinfection surface. The system incorporates image processing capability to evaluate disinfected regions with high accuracy. This feedback is then used to adjust the disinfection plan to guarantee that all assigned areas are disinfected properly. The system is also equipped with highly integrated simulation software to design, simulate and evaluate disinfection plans effectively. This work has allowed the robot to successfully carry out effective disinfection experiments while safely traversing through cluttered environments, climb stairs/slopes, and navigate on slippery surfaces.


Author(s):  
X. Tong ◽  
B. Tabarrok

Abstract In this paper the global motion of a rigid body subject to small periodic torques, which has a fixed direction in the body-fixed coordinate frame, is investigated by means of Melnikov’s method. Deprit’s variables are introduced to transform the equations of motion into a form describing a slowly varying oscillator. Then the Melnikov method developed for the slowly varying oscillator is used to predict the transversal intersections of stable and unstable manifolds for the perturbed rigid body motion. It is shown that there exist transversal intersections of heteroclinic orbits for certain ranges of parameter values.


Sign in / Sign up

Export Citation Format

Share Document