coefficient of diffusion
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 11)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
pp. 86-95
Author(s):  
Asmawi Nazrin ◽  
Salit Mohd Sapuan ◽  
Mohamed Yusoff Mohd Zuhri ◽  
Intan Syafinaz Mohamed Amin Tawakkal ◽  
Rushdan Ahmad Ilyas

Abstract In this study, sugar palm crystalline nanocellulose (SPCNC)-reinforced thermoplastic sugar palm starch (TPS) was blended with poly(lactic acid) (PLA) in order to prioritize the biodegradation feature while offsetting individual polymer limitation. Prior to melt blending process, SPCNC was dispersed through sonication in advance of starch gelatinization which was later casted into petri dishes. PLA and TPS were melt blended into five different ratios using Brabender mixer followed by compression molding. Soil degradation (4 months) and water uptake (4 weeks) tests were conducted to evaluate the physical stability of PLA/TPS blend bionanocomposites. Based on Fickian law, the diffusion curve and coefficient of diffusion for seawater, river water, and sewer water were calculated. The flammability and limiting oxygen index (LOI) tests were conducted in accordance with ASTM D635 and ASTM D2863, respectively. For PLA60TPS40 (40% TPS), significant reduction (46–69%) was recorded in maximum water uptake in all mediums, while soil degradation rate experienced insignificant increment (7.92%) for PLA70TPS30 (30% TPS) owing to the reinforcement of SPCNC through the well-dispersed TPS within PLA. Meanwhile, the flammability rates and LOI values for PLA40TPS60 and PLA60TPS40 indicated flammable material properties.


2021 ◽  
Author(s):  
Neige Calonne ◽  
Alexis Burr ◽  
Armelle Philip ◽  
Frédéric Flin ◽  
Christian Geindreau

Abstract. Modeling air transport through the entire ice sheet column is needed to interpret climate archives. To this end, different regressions were proposed to estimate the effective coefficient of diffusion and permeability of firn. Such regressions are often valid for specific depth or porosity ranges and were little evaluated as data of these properties are scarce. To contribute with a new dataset, this study presents the effective coefficient of diffusion and the permeability at Dome C and Lock In, Antarctica, from the near-surface to the close-off (23 to 133 m depth). Also, microstructure is characterized based on density, specific surface area, closed porosity ratio, connectivity index and structural anisotropy through the correlation lengths. All properties were estimated based on pore-scale computations on 3D tomographic images of firn samples. Normalized diffusion coefficient ranges from 1.9 × 10−1 to 8.3 × 10−5 and permeability ranges from 1.2 × 10−9 to 1.1 × 10−12 m2, for densities between 565 and 888 kg m−3. No or little anisotropy is reported. Next, we investigate the relationship of the transport properties with density over the firn density range as well as over the entire density range encountered in ice sheets by including snow data. Classical analytical models and regressions from literature are evaluated. For firn (550–850 kg m−3), good agreements are found for permeability and diffusion coefficient with the regressions based on the open porosity of Freitag et al. (2002) and Adolph and Albert (2014), despite the rather different site conditions (Greenland). Over the entire 100–850 kg m−3 density range, permeability is accurately reproduced by the Carman-Kozeny and Self-Consistent (spherical bi-composite) model when expressed in terms of a rescaled porosity ϕres = (ϕ–ϕoff) / (1–ϕoff) to account for pore closure, with ϕoff the close-off porosity. For the normalized diffusion coefficient, none of the evaluated formulas were satisfactory so we propose a new regression based on the rescaled porosity that reads D/Dair = (ϕres)1.61.


2021 ◽  
Vol 286 ◽  
pp. 02004
Author(s):  
Vanya Gandova ◽  
Stanislava Tasheva ◽  
Vanya Prodanova-Stefanova ◽  
Krasimira Dobreva ◽  
Ivayla Dincheva ◽  
...  

The thermodynamic and physicochemical properties of lavender oil (Lavandula angustifolia Mill.)-ethanol-water system were measured. The chemical composition of solutions of the lavender oil in 70%, 75%, 80%, 85%, 90%, and 95% ethanol was determined using GC/MS analysis. The main compounds in the solutions are oxygenated monoterpenes (β-linalool, terpinen-4-ol, α-terpineol, and linalyl acetate), followed by monoterpene hydrocarbons ((Z)-β-ocimene and (E)-β-ocimene), and sesquiterpene hydrocarbons (β-caryophyllene and (E)-β-farnesene). The ternary phase diagrams were constructed. By multiply linear regression model for surface tension prediction was applied. The thermodynamic and kinetic parameters of lavender oil – ethanol - water system were calculated (energy of Gibb’s, enthalpy, entropy, energy of activation, and coefficient of diffusion).


Author(s):  
Harmesa ◽  
A’an Johan Wahyudi

The biogeochemical cycle of trace metals is very likely affected by the global change in the ocean, especially due to the increasing of sea surface temperature and acidity. Thus, assessing biogeochemical cycle of trace metals will beneficial in elucidating the potential impact of climate change as well as ocean acidification. The assessment of the biogeochemical cycle of trace metals can be performed by measuring trace metals fluxes crossing the sediment-water interface. The main challenge in this measurement is the difficulty of measuring metal concentrations at trace levels due to either physical factors or biological factors that can affect the total flux. Sediment porewater profile and in situ benthic incubation are the two most commonly used methods for measuring trace metals fluxes from sediment to the overlying water or vice versa. The coefficient of diffusion and gradient of concentration are the two most important values in the sediment porewater profile method, while the constant volume involved in the container during the experiment is an important part of the in situ benthic incubation method. The purpose of this review is to provide an overview of both measurement methods deeply and predict the challenges faced in its implementation in Indonesia. Keywords: Benthic fluxes; Overlying water; Porewater; Sediment; Trace metals


Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1278 ◽  
Author(s):  
Wang ◽  
Xian ◽  
Li

Flax fiber has high sensitivity to moisture, and moisture uptake leads to the decrease of mechanical properties and distortion in shape. This paper attempts to graft flax fabric with nano-clay, with assistance from a silane-coupling agent, in order to improve hygrothermal resistance. The nano-clay grafted flax fabric reinforced epoxy (FFRP) composite produced through vacuum assisted resin infusion (VARI) process were subjected to 80% RH chamber for 12 weeks at 20, 40 and 70 °C, respectively. Moisture uptake, dimensional stability, and tensile properties was studied as a function of humidity exposure. Through SEM and FTIR, the effects of hygrothermal exposure was elucidated. In comparison to control FFRP plates, nano-clay grafting decreases saturation moisture uptake and the coefficient of diffusion of FFRP by 38.4% and 13.2%, respectively. After exposure for six weeks, the retention rate of the tensile modulus of the nano-clay grafted flax fiber based FFRP increased by 33.8% compared with that of the control ones. Nano-clay grafting also reduces the linear moisture expansion coefficient of FFRPs by 8.4% in a radial direction and 10.9% in a weft direction.


2019 ◽  
Author(s):  
Chem Int

This work is aimed at developing a mathematical model equation that can be used to predict the fate of contaminant in the soil environment. The mathematical model was developed based on the fundamental laws of conservation and the equation of continuity given asand was resolved to obtain a quadratic equation of the form C(X) = DX2+vX+f. The developed equation was then used to fit the experimental data that were obtained from the Physio-chemical analysis of the soil samples which were obtained at various depths; within the vicinity of the H & H Asphalt plant Company, located at Enito 3 in Ahoada West L.G.A, River State, Nigeria. The Experimental and Model results obtained from the Calculation and Simulation of the developed models were compared numerically and graphically as presented in this work. It was observed that there is reasonable level of agreement between the three results. The polynomial of the curve was established to ascertain the validity of the model; this was done for all the parameters that were analyzed. From the findings the model developed can be used to predict the concentration of a chemical pollutant at various depths. The reliability of the model developed was established giving the fact that through this quadratic equation the diffusivity (coefficient of diffusion), the water velocity and the irreversible reaction decay rate could be determined.


Sign in / Sign up

Export Citation Format

Share Document