scholarly journals Dating of Greenland Ice Cores by Flow Models, Isotopes, Volcanic Debris, and Continental Dust

1978 ◽  
Vol 20 (82) ◽  
pp. 3-26 ◽  
Author(s):  
C.U. Hammer ◽  
H. B. Clausen ◽  
W. Dansgaard ◽  
N. Gundestrup ◽  
S. J. Johnsen ◽  
...  

AbstractThe available methods for dating of ice cores are based on radioactive decay, ice-flow calculations, or stratigraphic observations. The two former categories are broadly outlined, and special emphasis is given to stratigraphic methods. Reference horizons are established back to A.D. 1783, in the form of elevated electrical conductivities due to fallout of soluble volcanic debris. Seasonal variations in the concentrations of insoluble microparticles and/or stable isotopes are measured over the entire 400 m lengths of three ice cores, recovered by Greenland Ice Sheet Program (GISP). The resulting absolute time scales are probably accurate within a few years per thousand. Techniques are outlined for re-establishing the approximate, original shape of heavy-isotope profiles that have been more or less smoothed by diffusion in firn and ice. Annual-layer thickness measurements on 24 increments down to 1130 m depth in the Camp Century ice core determine a flow pattern, consistent with that suggested by Dansgaard and Johnsen (1969), and a Camp Century time scale with an estimated uncertainty better than 3% back to 10000 years B.P.

1978 ◽  
Vol 20 (82) ◽  
pp. 3-26 ◽  
Author(s):  
C.U. Hammer ◽  
H. B. Clausen ◽  
W. Dansgaard ◽  
N. Gundestrup ◽  
S. J. Johnsen ◽  
...  

AbstractThe available methods for dating of ice cores are based on radioactive decay, ice-flow calculations, or stratigraphic observations. The two former categories are broadly outlined, and special emphasis is given to stratigraphic methods. Reference horizons are established back to A.D. 1783, in the form of elevated electrical conductivities due to fallout of soluble volcanic debris. Seasonal variations in the concentrations of insoluble microparticles and/or stable isotopes are measured over the entire 400 m lengths of three ice cores, recovered by Greenland Ice Sheet Program (GISP). The resulting absolute time scales are probably accurate within a few years per thousand. Techniques are outlined for re-establishing the approximate, original shape of heavy-isotope profiles that have been more or less smoothed by diffusion in firn and ice. Annual-layer thickness measurements on 24 increments down to 1130 m depth in the Camp Century ice core determine a flow pattern, consistent with that suggested by Dansgaard and Johnsen (1969), and a Camp Century time scale with an estimated uncertainty better than 3% back to 10000 years B.P.


2021 ◽  
Author(s):  
Francesco Muschitiello

Abstract. This study presents the first continuously measured transfer functions that quantify the age difference between the Greenland Ice-Core Chronology 2005 (GICC05) and the Hulu Cave U-Th timescale during the last glacial period. The transfer functions were estimated using an automated algorithm for Bayesian inversion that allows inferring a continuous and objective synchronization between Greenland ice-core and Hulu Cave proxy signals. The algorithm explicitly considers prior knowledge on the maximum counting error (MCE) of GICC05, but also samples synchronization scenarios that exceed the differential dating uncertainty of the annual-layer count in ice cores, which are currently not detectable using conventional tie-point alignments or wiggle-matching techniques. The consistency and accuracy of the results were ensured by estimating two independent synchronizations: a climate synchronization based on climate proxy records, and a climate-independent synchronization based on cosmogenic radionuclide data (i.e. 10Be and 14C). The transfer functions are up to 40 % more precise than previous estimates and significantly reduce the absolute dating uncertainty of the GICC05 back to 48 kyr ago. The results highlight that the annual-layer counting error of GICC05 is not strictly correlated over extended periods of time, and that within certain Greenland Stadials the differential dating uncertainty is likely underestimated by 7.5–20 %. Importantly, the analysis implies for the first time that during the Last Glacial Maximum GICC05 overcounts ice layers by 15–25 % –a bias attributable to a higher frequency of sub-annual layers due to changes in the seasonal cycle of precipitation and mode of dust deposition to the Greenland Ice Sheet. The new timescale transfer functions provide important constraints on the uncertainty surrounding the stratigraphic dating of the Greenland age-scale and enable an improved chronological integration of ice cores, U-Th-dated and radiocarbon-dated paleoclimate records on a common timeline. The transfer functions are available as supplements to this study.


2021 ◽  
Author(s):  
Giulia Sinnl ◽  
Mai Winstrup ◽  
Tobias Erhardt ◽  
Eliza Cook ◽  
Camilla Jensen ◽  
...  

Abstract. Ice-core timescales are vital for the understanding of past climate; hence they should be updated whenever significant amounts of new data can contribute to improvements. Here, the Greenland ice-core chronology was revised for the last 3835 years by synchronizing six deep ice-cores and three shallow ice-cores from the central Greenland ice sheet. A layer-counting bias was found in all ice cores because of site-specific signal disturbances, and a manual comparison of all ice cores was deemed necessary to increase timescale accuracy. A new method was applied by combining automated counting of annual layers on multiple parallel proxies and manual fine-tuning. After examining sources of error and their correlation lengths, the uncertainty rate was quantified to be one year per century. The new timescale is younger than the previous Greenland chronology by about 13 years at 3800 years ago. The most recent 800 years are largely unaffected by the revision, while the slope of the offset between timescales is steepest between 800 and 1000 years ago. Moreover, offset-oscillations of about 5 years around the average are observed between 2500 and 3800 years ago. The non-linear offset behavior is attributed to previous mismatches of volcanic eruptions, to the much more extensive data set available to this study, and to the finer resolution of the new ice-core matching. In response to volcanic eruptions, averaged water isotopes and layer thicknesses from Greenland ice cores provide evidence of notable cooling lasting for up to a decade, longer than reported in previous studies of volcanic forcing. By analysis of the common variations of cosmogenic radionuclides, the new ice-core timescale is found to be in alignment with the IntCal20 curve. Radiocarbon dated evidence found in the proximity of eruption sites such as Vesuvius or Thera was compared to the ice-core dataset; no conclusive evidence was found regarding if these two eruptions can be matched to acidity spikes in the ice cores. A hitherto unidentified cooling event in the ice cores is observed at about 3600 years ago (1600 BCE), which could have been caused by a large eruption which is, however, not clearly recorded in the acidity signal. The hunt for clear signs of the Thera eruption in Greenland ice-cores thus remains elusive.


1995 ◽  
Vol 43 (2) ◽  
pp. 125-132 ◽  
Author(s):  
Eiliv Larsen ◽  
Hans Petter Sejrup ◽  
Sigfus J. Johnsen ◽  
Karen Luise Knudsen

AbstractThe climatic evolution during the Eemian and the Holocene in western Europe is compared with the sea-surface conditions in the Norwegian Sea and with the oxygen-isotope-derived paleotemperature signal in the GRIP and Renland ice cores from Greenland. The records show a warm phase (ca. 3000 yr long) early in the Eemian (substage 5e). This suggests that the Greenland ice sheet, in general, recorded the climate in the region during this time. Rapid fluctuations during late stage 6 and late substage 5e in the GRIP ice core apparently are not recorded in the climatic proxies from western Europe and the Norwegian Sea. This may be due to low resolution in the terrestrial and marine records and/or long response time of the biotic changes. The early Holocene climatic optimum recorded in the terrestrial and marine records in the Norwegian Sea-NW European region is not found in the Summit (GRIP and GISP2) ice cores. However, this warm phase is recorded in the Renland ice core. Due to the proximity of Renland to the Norwegian Sea, this area is probably more influenced by changes in polar front positions which may partly explain this discrepancy. A reduction in the elevation at Summit during the Holocene may, however, be just as important. The high-amplitude shifts during substage 5e in the GRIP core could be due to Atlantic water oscillating closer to, and also reaching, the coast of East Greenland. During the Holocene, Atlantic water was generally located farther east in the Norwegian Sea than during the Eemian.


2021 ◽  
Author(s):  
Yuko Motizuki ◽  
Yoichi Nakai ◽  
Kazuya Takahashi ◽  
Junya Hirose ◽  
Yu Vin Sahoo ◽  
...  

<p>Ice cores preserve past climatic changes and, in some cases, astronomical signals. Here we present a newly developed automated ice-core sampler that employs laser melting. A hole in an ice core approximately 3 mm in diameter is melted and heated well below the boiling point by laser irradiation, and the meltwater is simultaneously siphoned by a 2 mm diameter movable evacuation nozzle that also holds the laser fiber. The advantage of sampling by laser melting is that molecular ion concentrations and stable water isotope compositions in ice cores can be measured at high depth resolution, which is advantageous for ice cores with low accumulation rates. This device takes highly discrete samples from ice cores, attaining depth resolution as small as ~3 mm with negligible cross contamination; the resolution can also be set at longer lengths suitable for validating longer-term profiles of various ionic and water isotopic constituents in ice cores. This technique allows the detailed reconstruction of past climatic changes at annual resolution and the investigation of transient ionic and isotopic signals within single annual layers in low-accumulation cores, potentially by annual layer counting.</p>


2008 ◽  
Vol 4 (1) ◽  
pp. 47-57 ◽  
Author(s):  
A. Svensson ◽  
K. K. Andersen ◽  
M. Bigler ◽  
H. B. Clausen ◽  
D. Dahl-Jensen ◽  
...  

Abstract. The Greenland Ice Core Chronology 2005 (GICC05) is a time scale based on annual layer counting of high-resolution records from Greenland ice cores. Whereas the Holocene part of the time scale is based on various records from the DYE-3, the GRIP, and the NorthGRIP ice cores, the glacial part is solely based on NorthGRIP records. Here we present an 18 ka extension of the time scale such that GICC05 continuously covers the past 60 ka. The new section of the time scale places the onset of Greenland Interstadial 12 (GI-12) at 46.9±1.0 ka b2k (before year AD 2000), the North Atlantic Ash Zone II layer in GI-15 at 55.4±1.2 ka b2k, and the onset of GI-17 at 59.4±1.3 ka b2k. The error estimates are derived from the accumulated number of uncertain annual layers. In the 40–60 ka interval, the new time scale has a discrepancy with the Meese-Sowers GISP2 time scale of up to 2.4 ka. Assuming that the Greenland climatic events are synchronous with those seen in the Chinese Hulu Cave speleothem record, GICC05 compares well to the time scale of that record with absolute age differences of less than 800 years throughout the 60 ka period. The new time scale is generally in close agreement with other independently dated records and reference horizons, such as the Laschamp geomagnetic excursion, the French Villars Cave and the Austrian Kleegruben Cave speleothem records, suggesting high accuracy of both event durations and absolute age estimates.


2021 ◽  
Author(s):  
Theo Jenk ◽  
Daniela Festi ◽  
Margit Schwikowski ◽  
Valter Maggi ◽  
Klaus Oeggl

<p>Dating glaciers is an arduous yet essential task in ice core studies, which becomes even more challenging for the dating of glaciers suffering from mass loss in the accumulation zone as result of climate warming. In this context, we present the dating of a 46 m deep ice core from the Central Italian Alps retrieved in 2016 from the Adamello glacier (Pian di Neve, 3100 m a.s.l.). We will show how the timescale for the core could be obtained by integrating results from the analyses of the radionuclides <sup>210</sup>Pb and <sup>137</sup>Cs with annual layer counting derived from pollen and refractory black carbon concentrations. Our results clearly indicate that the surface of the glacier is older than the drilling date of 2016 by about 20 years and that the 46 m ice core reaches back to around 1944. Despite the severe mass loss affecting this glacier even in the accumulation zone, we show that it is possible to obtain a reliable timescale for such a temperate glacier. These results are very encouraging and open new perspectives on the potential of such glaciers as informative palaeoarchives. We thus consider it important to present our dating approach to a broader audience.</p>


2018 ◽  
Vol 14 (1) ◽  
pp. 21-37 ◽  
Author(s):  
Pascal Bohleber ◽  
Tobias Erhardt ◽  
Nicole Spaulding ◽  
Helene Hoffmann ◽  
Hubertus Fischer ◽  
...  

Abstract. Among ice core drilling sites in the European Alps, Colle Gnifetti (CG) is the only non-temperate glacier to offer climate records dating back at least 1000 years. This unique long-term archive is the result of an exceptionally low net accumulation driven by wind erosion and rapid annual layer thinning. However, the full exploitation of the CG time series has been hampered by considerable dating uncertainties and the seasonal summer bias in snow preservation. Using a new core drilled in 2013 we extend annual layer counting, for the first time at CG, over the last 1000 years and add additional constraints to the resulting age scale from radiocarbon dating. Based on this improved age scale, and using a multi-core approach with a neighbouring ice core, we explore the time series of stable water isotopes and the mineral dust proxies Ca2+ and insoluble particles. Also in our latest ice core we face the already known limitation to the quantitative use of the stable isotope variability based on a high and potentially non-stationary isotope/temperature sensitivity at CG. Decadal trends in Ca2+ reveal substantial agreement with instrumental temperature and are explored here as a potential site-specific supplement to the isotope-based temperature reconstruction. The observed coupling between temperature and Ca2+ trends likely results from snow preservation effects and the advection of dust-rich air masses coinciding with warm temperatures. We find that if calibrated against instrumental data, the Ca2+-based temperature reconstruction is in robust agreement with the latest proxy-based summer temperature reconstruction, including a “Little Ice Age” cold period as well as a medieval climate anomaly. Part of the medieval climate period around AD 1100–1200 clearly stands out through an increased occurrence of dust events, potentially resulting from a relative increase in meridional flow and/or dry conditions over the Mediterranean.


2016 ◽  
Vol 63 (237) ◽  
pp. 22-38 ◽  
Author(s):  
ANDREAS BORN

ABSTRACTThe full history of ice sheet and climate interactions is recorded in the vertical profiles of geochemical tracers in polar ice sheets. Numerical simulations of these archives promise great advances both in the interpretation of these reconstructions and the validation of the models themselves. However, fundamental mathematical shortcomings of existing models subject tracers to spurious diffusion, thwarting straightforward solutions. Here, I propose a new vertical discretization for ice-sheet models that eliminates numerical diffusion entirely. Vertical motion through the model mesh is avoided by mimicking the real-world flow of ice as a thinning of underlying layers. A new layer is added to the surface at equidistant time intervals, isochronally, thus identifying each layer uniquely by its time of deposition and age. This new approach is implemented for a two-dimensional section through the summit of the Greenland ice sheet. The ability to directly compare simulations of vertical ice cores with reconstructed data is used to find optimal model parameters from a large ensemble of simulations. It is shown that because this tuning method uses information from all times included in the ice core, it constrains ice-sheet sensitivity more robustly than a realistic reproduction of the modern ice-sheet surface.


2002 ◽  
Vol 35 ◽  
pp. 45-51 ◽  
Author(s):  
Robert Mulvaney ◽  
Hans Oerter ◽  
David A. Peel ◽  
Wolfgang Graf ◽  
Carol Arrowsmith ◽  
...  

AbstractTwo medium-depth ice cores were retrieved from Berkner Island by a joint project between the Alfred-Wegener-Institut and the British Antarctic Survey in the 1994/95 field season. A 151m deep core from the northern dome (Reinwarthhöhe) of Berkner Island spans 700 years, while a 181 m deep core from the southern dome (Thyssenhöhe) spans approximately 1200 years. Both cores display clear seasonal cycles in electrical conductivity measurements, allowing dating by annual-layer counting and the calculation of accumulation profiles. Stable-isotope measurements (both δ18O and δD), together with the accumulation data, allow us to estimate changes in climate for most of the past millennium: the data show multi-decadal variability around a generally stable long-termmean. In addition, a full suite of major chemistry measurements is available to define the history of aerosol deposition at these sites: again, there is little evidence that the chemistry of the sites has changed over the past six centuries. Finally, we suggest that the southern dome, with an ice thickness of 950 m, is an ideal site from which to gain a climate history of the late stages of the last glacial and the deglaciation for comparison with the records from the deep Antarctic ice cores, and with other intermediate-depth cores such as Taylor Dome and Siple Dome.


Sign in / Sign up

Export Citation Format

Share Document