scholarly journals 1000 year ice-core records from Berkner Island, Antarctica

2002 ◽  
Vol 35 ◽  
pp. 45-51 ◽  
Author(s):  
Robert Mulvaney ◽  
Hans Oerter ◽  
David A. Peel ◽  
Wolfgang Graf ◽  
Carol Arrowsmith ◽  
...  

AbstractTwo medium-depth ice cores were retrieved from Berkner Island by a joint project between the Alfred-Wegener-Institut and the British Antarctic Survey in the 1994/95 field season. A 151m deep core from the northern dome (Reinwarthhöhe) of Berkner Island spans 700 years, while a 181 m deep core from the southern dome (Thyssenhöhe) spans approximately 1200 years. Both cores display clear seasonal cycles in electrical conductivity measurements, allowing dating by annual-layer counting and the calculation of accumulation profiles. Stable-isotope measurements (both δ18O and δD), together with the accumulation data, allow us to estimate changes in climate for most of the past millennium: the data show multi-decadal variability around a generally stable long-termmean. In addition, a full suite of major chemistry measurements is available to define the history of aerosol deposition at these sites: again, there is little evidence that the chemistry of the sites has changed over the past six centuries. Finally, we suggest that the southern dome, with an ice thickness of 950 m, is an ideal site from which to gain a climate history of the late stages of the last glacial and the deglaciation for comparison with the records from the deep Antarctic ice cores, and with other intermediate-depth cores such as Taylor Dome and Siple Dome.

2019 ◽  
Author(s):  
Stanislav Kutuzov ◽  
Michel Legrand ◽  
Suzanne Preunkert ◽  
Patrick Ginot ◽  
Vladimir Mikhalenko ◽  
...  

Abstract. Ice cores are one of the most valuable paleo-archives. Records from the ice cores can provide information not only about the amount of dust in the atmosphere but also about dust sources and its changes in the past. A 182 m long ice core has been recovered at the western plateau of Mt. Elbrus (5115 m elevation) in 2009. This record was extended with the shallow ice core drilling in 2013. Here we present analysis of the concentrations of Ca2+, a commonly used proxy of dust, recorded in Elbrus ice core over the period 1774–2013. The calcium record reveals a quasi decadal variability with a general increasing trend. Using multiple regression analysis we found a statistically significant spatial correlation of the Elbrus Ca2+ summer concentrations and precipitation and soil moisture content in Levant region (specifically Syria and Iraq). The Ca2+ record also correlates with drought index in North Africa (r = 0.69 p 


2019 ◽  
Vol 19 (22) ◽  
pp. 14133-14148 ◽  
Author(s):  
Stanislav Kutuzov ◽  
Michel Legrand ◽  
Susanne Preunkert ◽  
Patrick Ginot ◽  
Vladimir Mikhalenko ◽  
...  

Abstract. Ice cores are one of the most valuable paleo-archives. Records from ice cores provide information not only about the amount of dust in the atmosphere, but also about dust sources and their changes in the past. In 2009, a 182 m long ice core was recovered from the western plateau of Mt Elbrus (5115 m a.s.l.). This record was further extended after a shallow ice core was drilled in 2013. Here we analyse Ca2+ concentrations, a commonly used proxy of dust, recorded in these Elbrus ice records over the time period of 1774–2013 CE. The Ca2+ record reveals quasi-decadal variability with a generally increasing trend. Using multiple regression analysis, we found a statistically significant spatial correlation of the Elbrus Ca2+ summer concentrations with precipitation and soil moisture content in the Levant region (specifically Syria and Iraq). The Ca2+ record also correlates with drought indices in North Africa (r=0.67, p<0.001) and Middle East regions (r=0.71, p<0.001). Dust concentrations prominently increase in the ice core over the past 200 years, confirming that the recent droughts in the Fertile Crescent (1998–2012 CE) present the most severe aridity experienced in at least the past two centuries. For the most recent 33 years recorded (1979–2012 CE), significant correlations exist between Ca2+ and Pacific circulation indices (Pacific Decadal Oscillation, Southern Oscillation Index and Niño 4), which suggests that the increased frequency of extreme El Niño and La Niña events due to a warming climate has extended their influence to the Middle East. Evidence demonstrates that the increase in Ca2+ concentration in the ice core cannot be attributed to human activities, such as coal combustion and cement production.


2020 ◽  
Author(s):  
Tobias Erhardt ◽  
Camilla Jensen ◽  
Maria Hörhold ◽  
Hubertus Fischer

&lt;p&gt;Records of past aerosol deposition to the polar ice sheets have enabled us to study variability in different parts of the earth system in great temporal detail over past glacial cycles. Furthermore, the high temporal resolution of ice-core aerosol records has been the basis for precise dating of climate records using annual layer counting. Nonetheless, the intermittent character of show deposition and especially the redistribution of snow on the surface of the ice sheet intrinsically affects the preservation of climate signals in the ice. This strongly limits how representative a climate record from a single ice core can be. It has been well established that even though seasonal variability might be preserved in an ice-core aerosol record, the inter annual variability of that record is different from a different core from the same site.&lt;/p&gt;&lt;p&gt;Until now most of the investigations have focused on inter annual representatives. This is mostly due to limited sample availability as multiple long records are needed for investigations on longer time scales. However, with the prospect of new high-resolution records over the Holocene from the EastGRIP ice core, understanding the representativeness of this record on decadal time scales is an important question. To tackle this problem, we use high-resolution aerosol records from multiple closely spaced ice cores from the EastGRIP deep ice core drill site. The records approximately cover the last millennium and are sub-seasonally resolved enabling the study of interannual to decadal variability over multiple aerosol species. All records are dated using annual layer counting and cross dating to the EastGRIP deep ice core using volcanic match points. In the presented pilot study, we focus on records of sea-salt and dust related aerosol species as well as on episodic aerosol signals from volcanos and wildfires.&lt;/p&gt;


2020 ◽  
Author(s):  
Daniele FIlippi ◽  
Chiara Giorio

&lt;p&gt;The Beyond EPICA Oldest Ice (BEOI) project will drill an ice core dating back to 1.5 million-years (1.5 Myr) ago. This ice core is of particular interest to the scientific community as it will be the only one covering the climate history of the Mid Pleistocene Transition, when glacial-interglacial cycles changed from a 40 Kyr to 100 Kyr cyclicity, and for which causes are not well understood currently. Obtaining useful climatic information beyond 800 Kyr represents an analytical challenge due to the fact that the deepest section of the ice core is very compact and the amount of sample available is very low.&lt;/p&gt;&lt;p&gt;Current analytical methods for the determination of organics in ice are characterized by a large number of steps that requires large amounts of sample for a single analysis. This results in the loss of the high time resolution desired from ice cores which is particularly problematic for deeper (i.e. older) records where the ice is more compact.&lt;/p&gt;&lt;p&gt;This work aims at combining the growing field of microfluidics with improvements to conventional mass spectrometry to allow for continuous analysis of organics in ice cores, melted in continuous on a melting-head. In fact, microfluidic is a powerful technology in which, only a small amount of liquid (10&lt;sup&gt;-9&lt;/sup&gt;-10&lt;sup&gt;-18&lt;/sup&gt; liters) is manipulated and controlled with an extremely high precision. The method invokes a three-step process: (1) the melted ice core sample is sent to a nebulizer to produce aerosol, then (2) the aerosol is dried to remove water content and concentrate the sample, and (3) the aerosol is sent to a mass spectrometer for continuous analysis through a modified electrospray ionization (ESI) probe.&lt;/p&gt;&lt;p&gt;This novel system, once operational, can be applied to a range of ice cores but is especially useful for older ice cores given the stratification of deeper segments. It will allow the research community to measure organic compounds with a high time resolution, even in the oldest of ice, to retrieve paleoclimatic information that would otherwise be lost using traditional methods.&lt;/p&gt;


10 Be is produced in a similar way as 14 C by the interaction of cosmic radiation with the nuclei in the atmosphere. Assuming that the 10 Be and 14 C variation are proportional and considering the different behaviour in the Earth system, the 10 Be concentrations in ice cores can be compared with the 14 C variations in tree rings. A high correlation is found for the short-term variations ( 14 C-Suess-wiggles). They reflect with a high probability production rate variations. More problematic is the interpretation of the long-term trends of 14 C and 10 Be. Several explanations are discussed. The reconstructed CO 2 concentrations in ice cores indicate a rather constant value (280 ± 10 p.p.m. by volume) during the past few millenia. Measurements on the ice core from Byrd Station, Antarctica, during the period 9000 to 6000 years BP indicate a decrease that might be explained by the extraction of CO 2 from the atmosphere-ocean system to build the terrestrial biomass pool during the climatic optimum.


2014 ◽  
Vol 10 (3) ◽  
pp. 1195-1209 ◽  
Author(s):  
T. J. Fudge ◽  
E. D. Waddington ◽  
H. Conway ◽  
J. M. D. Lundin ◽  
K. Taylor

Abstract. Antarctic ice cores have often been dated by matching distinctive features of atmospheric methane to those detected in annually dated ice cores from Greenland. Establishing the timescale between these tie-point ages requires interpolation. While the uncertainty at tie points is relatively well described, uncertainty of the interpolation is not. Here we assess the accuracy of three interpolation schemes using data from the WAIS Divide ice core in West Antarctica; we compare the interpolation methods with the annually resolved timescale for the past 30 kyr. Linear interpolation yields large age errors (up to 380 years) between tie points, abrupt changes in duration of climate events at tie points, and an age bias. Interpolations based on the smoothest accumulation rate (ACCUM) or the smoothest annual-layer thickness (ALT) yield timescales that more closely agree with the annually resolved timescale and do not have abrupt changes in duration at tie points. We use ALT to assess the uncertainty in existing timescales for the past 30 kyr from Byrd, Siple Dome, and Law Dome. These ice-core timescales were developed with methods similar to linear interpolation. Maximum age differences exceed 1000 years for Byrd and Siple Dome, and 500 years for Law Dome. For the glacial–interglacial transition (21 to 12 kyr), the existing timescales are, on average, older than ALT by 40 years for Byrd, 240 years for Siple Dome, and 150 years for Law Dome. Because interpolation uncertainty is often not considered, age uncertainties for ice-core records are often underestimated.


2021 ◽  
Vol 11 (9) ◽  
pp. 3830
Author(s):  
Francesco Enrichi ◽  
Dorthe Dahl-Jensen ◽  
Jørgen Peder Steffensen ◽  
Carlo Barbante

To reconstruct climate history of the past 1.5 Million years, the project: Beyond EPICA Oldest Ice (BEOI) will drill about 2700 m of ice core in East Antarctica (2021–2025). As drilling fluid, an aliphatic ester fluid, EstisolTM 140, will be used. Newly drilled ice cores will be retrieved from the drill soaked in fluid, and this fluid should be removed from the cores. Most of it will be vacuum-cleaned off in a Fluid Extraction Device and wiped off with paper towels. Based on our experiences in Greenland deep ice coring, most of the residual fluid can be removed by storing the cores openly on shelves in a ventilated room. After a week of “drying”, the cores have a dry feel, handling them do not give “wet” gloves and they can easily be marked with lead pencils. This paper presents a theoretical investigation and some simple testing on the “drying” process. The rates of sublimation of ice and evaporation of fluid have been calculated at different temperatures. The calculations show that sublimation of the ice core should not occur, and that evaporation of fluid should be almost negligible. Our test results support these calculations, but also revealed significant fluid run-off and dripping, resulting in the removal of most of the fluid in a couple of days, independent of temperature and ventilation conditions. Finally, we discuss crucial factors that ensure optimal long-term ice core preservation in storage, such as temperature stability, defrosting cycles of freezers and open core storage versus storage of cores in insulated crates.


2007 ◽  
Vol 3 (6) ◽  
pp. 1235-1260 ◽  
Author(s):  
K. K. Andersen ◽  
M. Bigler ◽  
H. B. Clausen ◽  
D. Dahl-Jensen ◽  
S. J. Johnsen ◽  
...  

Abstract. The Greenland Ice Core Chronology 2005 (GICC05) is a time scale based on annual layer counting of high-resolution records from Greenland ice cores. Whereas the Holocene part of the time scale is based on various records from the DYE-3, the GRIP, and the NorthGRIP ice cores, the glacial part is solely based on NorthGRIP records. Here we present an 18 kyr extension of the time scale such that GICC05 continuously covers the past 60 kyr. The new section of the time scale places the onset of Greenland Interstadial 12 (GI-12) at 46.9±1.0 kyr b2k (before year AD 2000), the North Atlantic Ash Zone 2 layer in GI-15 at 55.4±1.2 kyr b2k, and the onset of GI-17 at 59.4±1.3 kyr b2k. The error estimates are derived from the accumulated number of uncertain annual layers and can be regarded as 1σ uncertainties. In the 40–60 kyr interval the new time scale has a discrepancy with the Meese-Sowers GISP2 time scale of up to 2.4 kyr, whereas GICC05 compares well to the dating of the Hulu Cave record with absolute age differences of less than 800 years throughout the 60 kyr period. The new time scale is generally in close agreement with other independently dated records and reference horizons, such as the Laschamp geomagnetic excursion and the Kleegruben speleothem record from the Austrian Alps, suggesting high accuracy of both event durations and absolute age estimates.


2014 ◽  
Vol 10 (1) ◽  
pp. 65-104 ◽  
Author(s):  
T. J. Fudge ◽  
E. D. Waddington ◽  
H. Conway ◽  
J. M. D. Lundin ◽  
K. Taylor

Abstract. Antarctic ice cores have often been dated by matching distinctive features of atmospheric methane to those detected in annually dated ice cores from Greenland. Establishing the timescale between these tie-point ages requires interpolation. While the uncertainty at tie points is relatively well described, uncertainty of the interpolation is not. Here we assess the accuracy of three interpolation schemes using data from the WAIS Divide ice core in West Antarctica; we compare the interpolation methods with the annually resolved timescale for the past 30 kyr. Linear interpolation yields large age errors (up to 380 yr) between tie points, abrupt changes in duration at tie points, and an age bias. Interpolation based on the smoothest accumulation rate (ACCUM) or the smoothest annual-layer thickness (ALT) yield timescales that more closely agree with the annually resolved timescale and do not have abrupt changes in duration at the tie points. We use ALT to assess the uncertainty in existing timescales for the past 30 kyr from Byrd, Siple Dome, and Law Dome. These ice-core timescales were developed with methods similar to linear interpolation. Maximum age differences exceed 1000 yr for Byrd and Siple Dome, and 500 yr for Law Dome. For the glacial-interglacial transition (21 to 12 kyr), the existing timescales are, on average, older than ALT by 40 yr for Byrd, 240 yr for Siple Dome, and 150 yr for Law Dome. Because interpolation uncertainty is often not considered, age uncertainties for ice-core records are often underestimated.


2016 ◽  
Vol 113 (50) ◽  
pp. 14249-14254 ◽  
Author(s):  
Kurt M. Cuffey ◽  
Gary D. Clow ◽  
Eric J. Steig ◽  
Christo Buizert ◽  
T. J. Fudge ◽  
...  

The most recent glacial to interglacial transition constitutes a remarkable natural experiment for learning how Earth’s climate responds to various forcings, including a rise in atmospheric CO2. This transition has left a direct thermal remnant in the polar ice sheets, where the exceptional purity and continual accumulation of ice permit analyses not possible in other settings. For Antarctica, the deglacial warming has previously been constrained only by the water isotopic composition in ice cores, without an absolute thermometric assessment of the isotopes’ sensitivity to temperature. To overcome this limitation, we measured temperatures in a deep borehole and analyzed them together with ice-core data to reconstruct the surface temperature history of West Antarctica. The deglacial warming was 11.3±1.8∘C, approximately two to three times the global average, in agreement with theoretical expectations for Antarctic amplification of planetary temperature changes. Consistent with evidence from glacier retreat in Southern Hemisphere mountain ranges, the Antarctic warming was mostly completed by 15 kyBP, several millennia earlier than in the Northern Hemisphere. These results constrain the role of variable oceanic heat transport between hemispheres during deglaciation and quantitatively bound the direct influence of global climate forcings on Antarctic temperature. Although climate models perform well on average in this context, some recent syntheses of deglacial climate history have underestimated Antarctic warming and the models with lowest sensitivity can be discounted.


Sign in / Sign up

Export Citation Format

Share Document