scholarly journals Snow accumulation and ice flow at Dôme du Goûter (4300 m), Mont Blanc, French Alps

1997 ◽  
Vol 43 (145) ◽  
pp. 513-521 ◽  
Author(s):  
C. Vincent ◽  
M. Vallon ◽  
J. F. Pinglot ◽  
M. Funk ◽  
L. Reynaud

AbstractGlaciological experiments have been carried out at Dôme du Goûter (4300 m a.s.l.), Mont Blanc, in order to understand the flow of firn/ice in this high-altitude Alpine glacierized area. Accumulation measurements from stakes show a very strong spatial variability and an unusual feature of mass-balance fluctuations for the Alps, i.e. the snow accumulation does not show any seasonal patterns. Measured vertical velocities which should match with long-term mean mass balance are consistent with observed accumulations. Therefore, the measurement of vertical velocities seems a good way of quickly obtaining reliable mean accumulation values for several decades in such a region.A simple flow model can be used to determine the main flowlines of the glacier and to propose snow/ice age of core samples from the two boreholes drilled down tο the bedrock in June 1994. These results coincide with radioactivity measurements made to identify the well-known radioactive snow layers of 1963 and 1986. We can hope to obtain ice samples 55–60 years old about 20 or 30 m above the bedrock (110 m deep). Below, the deformation of the ice layers is loo great to be dated accurately.

1997 ◽  
Vol 43 (145) ◽  
pp. 513-521 ◽  
Author(s):  
C. Vincent ◽  
M. Vallon ◽  
J. F. Pinglot ◽  
M. Funk ◽  
L. Reynaud

AbstractGlaciological experiments have been carried out at Dôme du Goûter (4300 m a.s.l.), Mont Blanc, in order to understand the flow of firn/ice in this high-altitude Alpine glacierized area. Accumulation measurements from stakes show a very strong spatial variability and an unusual feature of mass-balance fluctuations for the Alps, i.e. the snow accumulation does not show any seasonal patterns. Measured vertical velocities which should match with long-term mean mass balance are consistent with observed accumulations. Therefore, the measurement of vertical velocities seems a good way of quickly obtaining reliable mean accumulation values for several decades in such a region.A simple flow model can be used to determine the main flowlines of the glacier and to propose snow/ice age of core samples from the two boreholes drilled down tο the bedrock in June 1994. These results coincide with radioactivity measurements made to identify the well-known radioactive snow layers of 1963 and 1986. We can hope to obtain ice samples 55–60 years old about 20 or 30 m above the bedrock (110 m deep). Below, the deformation of the ice layers is loo great to be dated accurately.


2017 ◽  
Vol 11 (1) ◽  
pp. 281-302 ◽  
Author(s):  
Henning Åkesson ◽  
Kerim H. Nisancioglu ◽  
Rianne H. Giesen ◽  
Mathieu Morlighem

Abstract. Understanding of long-term dynamics of glaciers and ice caps is vital to assess their recent and future changes, yet few long-term reconstructions using ice flow models exist. Here we present simulations of the maritime Hardangerjøkulen ice cap in Norway from the mid-Holocene through the Little Ice Age (LIA) to the present day, using a numerical ice flow model combined with glacier and climate reconstructions. In our simulation, under a linear climate forcing, we find that Hardangerjøkulen grows from ice-free conditions in the mid-Holocene to its maximum extent during the LIA in a nonlinear, spatially asynchronous fashion. During its fastest stage of growth (2300–1300 BP), the ice cap triples its volume in less than 1000 years. The modeled ice cap extent and outlet glacier length changes from the LIA until today agree well with available observations. Volume and area for Hardangerjøkulen and several of its outlet glaciers vary out-of-phase for several centuries during the Holocene. This volume–area disequilibrium varies in time and from one outlet glacier to the next, illustrating that linear relations between ice extent, volume and glacier proxy records, as generally used in paleoclimatic reconstructions, have only limited validity. We also show that the present-day ice cap is highly sensitive to surface mass balance changes and that the effect of the ice cap hypsometry on the mass balance–altitude feedback is essential to this sensitivity. A mass balance shift by +0.5 m w.e. relative to the mass balance from the last decades almost doubles ice volume, while a decrease of 0.2 m w.e. or more induces a strong mass balance–altitude feedback and makes Hardangerjøkulen disappear entirely. Furthermore, once disappeared, an additional +0.1 m w.e. relative to the present mass balance is needed to regrow the ice cap to its present-day extent. We expect that other ice caps with comparable geometry in, for example, Norway, Iceland, Patagonia and peripheral Greenland may behave similarly, making them particularly vulnerable to climate change.


2010 ◽  
Vol 4 (4) ◽  
pp. 1909-1929
Author(s):  
A. Perşoiu ◽  
A. Pazdur

Abstract. The paleoclimatic significance of the perennial ice deposit in Scărişoara Ice Cave has been remarked since the early 20th century, but a clear understanding of the processes involved in the genesis, age and long-term dynamics of ice hampered all attempts to extract valuable data on past climate and vegetation changes. In this paper, we present a model of ice genesis and dynamics, based on stable isotopes, ice level monitoring (modern and archived) and radiocarbon dating of organic matter found in the ice. Ice in Scărişoara Ice Cave mostly consists of layers of lake ice, produced as liquid water freezes from top to bottom in mid-autumn, a mechanism that was also acting in the past, during the Medieval Warm Period and the Little Ice Age. The ice block is not stable in shape and volume, being continuously modified by ablation on top, basal melting and lateral flow. Radiocarbon dating shows that the ice block is older than 1200 years, the rate of ice flow and basal melting suggesting that the ice could be much older.


1992 ◽  
Vol 38 (129) ◽  
pp. 223-232 ◽  
Author(s):  
J. Oerlemans

AbstractThree glaciers in southern Norway, with very different mass-balance characteristics, are studied with an energy-balance model of the ice/snow surface. The model simulates the observed mass-balance profiles in a satisfactory way, and can thus be used with some confidence in a study of climate sensitivity. Calculated changes in equilibrium-line altitude for a 1 K temperature increase are 110, 108 and 135 m for Nigardsbreen, Hellstugubreen and Alfotbreen, respectively. The corresponding changes in mass balance, averaged over the entire glacier area, are −0.88, −0.715 and −1.11 m year−1 (water equivalent).Runs with an ice-flow model for Nigardsbreen, to which calculated mass-balance profiles arc imposed, predict that the front will advance by 3 km for a 1 K cooling, and will retreat by as much as 6.5 km for a 1 K warming. The response to a 10% increase in precipitation would be a 2 km advance of the snout, whereas a 4 km retreat is predicted for a 10% decrease. This large sensitivity (as compared to many other glaciers) is to a large extent due to the geometry of Nigardsbreen.


2013 ◽  
Vol 9 (3) ◽  
pp. 1029-1051 ◽  
Author(s):  
M. Guillevic ◽  
L. Bazin ◽  
A. Landais ◽  
P. Kindler ◽  
A. Orsi ◽  
...  

Abstract. Air and water stable isotope measurements from four Greenland deep ice cores (GRIP, GISP2, NGRIP and NEEM) are investigated over a series of Dansgaard–Oeschger events (DO 8, 9 and 10), which are representative of glacial millennial scale variability. Combined with firn modeling, air isotope data allow us to quantify abrupt temperature increases for each drill site (1σ = 0.6 °C for NEEM, GRIP and GISP2, 1.5 °C for NGRIP). Our data show that the magnitude of stadial–interstadial temperature increase is up to 2 °C larger in central and North Greenland than in northwest Greenland: i.e., for DO 8, a magnitude of +8.8 °C is inferred, which is significantly smaller than the +11.1 °C inferred at GISP2. The same spatial pattern is seen for accumulation increases. This pattern is coherent with climate simulations in response to reduced sea-ice extent in the Nordic seas. The temporal water isotope (δ18O)–temperature relationship varies between 0.3 and 0.6 (±0.08) ‰ °C−1 and is systematically larger at NEEM, possibly due to limited changes in precipitation seasonality compared to GISP2, GRIP or NGRIP. The gas age−ice age difference of warming events represented in water and air isotopes can only be modeled when assuming a 26% (NGRIP) to 40% (GRIP) lower accumulation than that derived from a Dansgaard–Johnsen ice flow model.


2014 ◽  
Vol 8 (1) ◽  
pp. 1257-1278
Author(s):  
S. A. Khan ◽  
K. K. Kjeldsen ◽  
K. H. Kjær ◽  
S. Bevan ◽  
A. Luckman ◽  
...  

Abstract. Observations over the past decade show significant ice loss associated with the speed-up of glaciers in southeast Greenland from 2003, followed by a deceleration from 2006. These short-term, episodic, dynamic perturbations have a major impact on the mass balance at the decadal scale. To improve the projection of future sea level rise, a long-term data record that reveals the mass balance beyond such episodic events is required. Here, we extend the observational record of marginal thinning of Helheim glacier (HG) and Kangerdlugssuaq glacier (KG) from 10 to more than 150 yr. We show that although the frontal portion of HG thinned by more than 100 m between 2003 and 2006, it thickened by more than 50 m during the previous two decades. In contrast, KG was stable from 1981 to 1998 and experienced major thinning only after 2003. Extending the record back to the end of the Little Ice Age (ca. 1850) shows no significant thinning of HG from 1850 to 1981, while KG underwent substantial thinning of ~265 m. Analyses of their sensitivity to sub-surface water temperature anomalies and variations in air temperature suggest that both HG and KG are highly sensitive to short-term atmospheric and ocean forcing, and respond very quickly to small fluctuations. At century time-scales, however, multiple external parameters (e.g. outlet shape) dominate the mass change. These findings undermine attempts to use measurements over the last decade as initial conditions to project future dynamic ice loss.


2019 ◽  
Author(s):  
Martin Stocker-Waldhuber ◽  
Andrea Fischer ◽  
Kay Helfricht ◽  
Michael Kuhn

Abstract. Climatic forcing affects glacier mass balance and ice flow dynamics on different time scales, resulting in length changes. Mass Balance and length changes are operationally used for glacier monitoring, whereas only a few time series of glacier dynamics have been recorded. With more than 100 years of measurements of ice flow velocities at stakes and stone lines on Hintereisferner and more than 50 years on Kesselwandferner, annual velocity and glacier fluctuation records have similar lengths. Subseasonal variations of ice flow velocities have been measured on Gepatschferner and Taschachferner for nearly a decade. The ice flow velocities on Hintereisferner and especially on Kesselwandferner show great variations between advancing and retreating periods, with magnitudes increasing from the highest to the lowest stakes, making ice flow records at ablation stakes a very sensitive indicator of glacier state. Since the end of the latest glacier advances from the 1970s to the 1980s, the ice flow velocities have decreased continuously, a strong indicator of the negative mass balances of the glaciers in recent decades. The velocity data sets of the four glaciers are available at https://doi.pangaea.de/10.1594/PANGAEA.896741.


1992 ◽  
Vol 38 (129) ◽  
pp. 223-232 ◽  
Author(s):  
J. Oerlemans

AbstractThree glaciers in southern Norway, with very different mass-balance characteristics, are studied with an energy-balance model of the ice/snow surface. The model simulates the observed mass-balance profiles in a satisfactory way, and can thus be used with some confidence in a study of climate sensitivity. Calculated changes in equilibrium-line altitude for a 1 K temperature increase are 110, 108 and 135 m for Nigardsbreen, Hellstugubreen and Alfotbreen, respectively. The corresponding changes in mass balance, averaged over the entire glacier area, are −0.88, −0.715 and −1.11 m year−1(water equivalent).Runs with an ice-flow model for Nigardsbreen, to which calculated mass-balance profiles arc imposed, predict that the front will advance by 3 km for a 1 K cooling, and will retreat by as much as 6.5 km for a 1 K warming. The response to a 10% increase in precipitation would be a 2 km advance of the snout, whereas a 4 km retreat is predicted for a 10% decrease. This large sensitivity (as compared to many other glaciers) is to a large extent due to the geometry of Nigardsbreen.


2021 ◽  
Author(s):  
Anya Schlich-Davies ◽  
Ann Rowan ◽  
Duncan Quincey ◽  
Andrew Ross ◽  
David Egholm

<p>Debris-covered glaciers in the Himalaya are losing mass more rapidly than expected. Quantifying and understanding the behaviour of these glaciers under climate change requires the use of numerical glacier models that represent the important feedbacks between debris transport, ice flow, and mass balance. However, these approaches have, so far, lacked a robust representation of the distributed mass balance forcing that is critical for making accurate simulations of ice volume change. This study forces a 3D higher-order ice flow model, with the outputs from an ensemble of distributed models of present day and future mass balance of Khumbu Glacier, Nepal. Distributed mass balance modelling, using the open access COupled Snowpack and Ice surface energy and mass balance model in PYthon (COSIPY) model (Sauter et al., 2020), was forced by three statistically downscaled climate models from the Coordinated Regional Climate Downscaling Experiment (CORDEX) project.</p><p>Climate models were selected based on their ability to reproduce observed present-day seasonality and to account for several future climate and monsoon scenarios, the latter being of particular importance for these summer-accumulation type glaciers. Two emission scenarios, RCP4.5 and RCP8.5, were also chosen to simulate glacier change to 2100. Statistical downscaling involved Quantile Mapping and Generalized Analog Regression Downscaling, and the efficacy of these approaches was informed by present day mass balance sensitivity studies. Downscaled daily climate data were trained with data from two weather stations to aid disaggregation to an hourly resolution.</p><p>The integration of the mass balance and ice flow models posed some interesting challenges. The COSIPY model was run as if Khumbu Glacier were a clean-ice glacier (with no supraglacial debris) with sub-debris ablation resolved in the ice flow model. The value of using distributed mass balance forcing is seen in the simulated present-day velocities in the Khumbu icefall, which give a better fit to remote-sensing observations than previous simulations using a simple elevation-dependent mass balance forcing. The simulated present-day glacier extent is considerably smaller than the existing glacier outline. The debris-covered tongue, known to be losing mass at an accelerating rate, is virtually absent from these results, and is indicative of a stagnant tongue that is now or very soon to be dynamically disconnected from the active upper reaches of Khumbu Glacier.</p>


2018 ◽  
Vol 64 (246) ◽  
pp. 568-582 ◽  
Author(s):  
GABRIELA COLLAO-BARRIOS ◽  
FABIEN GILLET-CHAULET ◽  
VINCENT FAVIER ◽  
GINO CASASSA ◽  
ETIENNE BERTHIER ◽  
...  

ABSTRACTWe simulate the ice dynamics of the San Rafael Glacier (SRG) in the Northern Patagonia Icefield (46.7°S, 73.5°W), using glacier geometry obtained by airborne gravity measurements. The full-Stokes ice flow model (Elmer/Ice) is initialized using an inverse method to infer the basal friction coefficient from a satellite-derived surface velocity mosaic. The high surface velocities (7.6 km a−1) near the glacier front are explained by low basal shear stresses (<25 kPa). The modelling results suggest that 98% of the surface velocities are due to basal sliding in the fast-flowing glacier tongue (>1 km a−1). We force the model using different surface mass-balance scenarios taken or adapted from previous studies and geodetic elevation changes between 2000 and 2012. Our results suggest that previous estimates of average surface mass balance over the entire glacier (Ḃ) were likely too high, mainly due to an overestimation in the accumulation area. We propose that most of SRG imbalance is due to the large ice discharge (−0.83 ± 0.08 Gt a−1) and a slightly positiveḂ(0.08 ± 0.06 Gt a−1). The committed mass-loss estimate over the next century is −0.34 ± 0.03 Gt a−1. This study demonstrates that surface mass-balance estimates and glacier wastage projections can be improved using a physically based ice flow model.


Sign in / Sign up

Export Citation Format

Share Document