Macrophage-mediated damage to filarial worms (Dipetalonema setariosum) in vivo

1982 ◽  
Vol 56 (3) ◽  
pp. 235-241 ◽  
Author(s):  
M. J. Worms ◽  
Diane J. McLaren

ABSTRACTAn adult female Dipetalonema setariosum (Mönnig 1926) recovered from the pleural cavity of Meriones libycus and bearing an adherent cell mass was examined by means of electron microscopy. The host reaction consisted exclusively of macrophages and was associated with disruption of the cuticular membrane and invasion of the cuticle itself. There was no evidence of prior activity by other cell types. Initiation of damage appeared to be associated with the release of lysosomal enzymes by the macrophages. Within the reaction a localized breaching of the cuticle had occurred and cells had penetrated the internal tissues of the worm. It is suggested that macrophages may play a role in the elimination of effete worms from an established population.

Development ◽  
1995 ◽  
Vol 121 (7) ◽  
pp. 2069-2077
Author(s):  
E.D. Newman-Smith ◽  
Z. Werb

Mouse embryos containing only maternal chromosomes (parthenotes) develop abnormally in vivo, usually failing at the peri-implantation stage. We have analyzed the development of parthenote embryos by using an inner cell mass (ICM) outgrowth assay that mimics peri-implantation development. ICMs from normal embryos maintained undifferentiated stem cells positive for stage-specific embryonic antigen-1 and Rex-1 while differentiating into a variety of cell types, including visceral endoderm-like cells and parietal endoderm cells. In contrast, ICMs from parthenotes failed to maintain undifferentiated stem cells and differentiated almost exclusively into parietal endoderm. This suggests that parthenote ICMs have a defect that leads to differentiation, rather than maintenance, of the stem cells, and a defect that leads to a parietal endoderm fate for the stem cells. To test the hypothesis that the ICM population is not maintained owing to a lack of proliferation of the stem cells, we investigated whether mitogenic agents were able to maintain the ICM population in parthenotes. When parthenote blastocysts were supplied with the insulin-like growth factor-1 receptor (Igf-1r) and insulin-like growth factor-2 (Igf-2), two genes not detectable in parthenote blastocysts by in situ hybridization, the ICM population was maintained. Similarly, culture of parthenote blastocysts in medium conditioned by embryonic fibroblasts and supplemented with the maternal factor leukemia inhibitory factor maintained the ICM population. However, once this growth factor-rich medium was removed, the parthenote ICM cells still differentiated predominantly into parietal endoderm.(ABSTRACT TRUNCATED AT 250 WORDS)


2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Françoise Carlotti ◽  
Arnaud Zaldumbide ◽  
Johanne H. Ellenbroek ◽  
H. Siebe Spijker ◽  
Rob C. Hoeben ◽  
...  

β-cell replacement by allogeneic islet transplantation is a promising approach for patients with type 1 diabetes, but the shortage of organ donors requires new sources ofβcells. Islet regenerationin vivoand generation ofβ-cellsex vivofollowed by transplantation represent attractive therapeutic alternatives to restore theβ-cell mass. In this paper, we discuss different postnatal cell types that have been envisaged as potential sources for futureβ-cell replacement therapy. The ultimate goal being translation to the clinic, a particular attention is given to the discrepancies between findings from studies performed in rodents (bothex vivoon primary cells andin vivoon animal models), when compared with clinical data and studies performed on human cells.


1980 ◽  
Vol 86 (2) ◽  
pp. 402-416 ◽  
Author(s):  
D H Tippit ◽  
J D Pickett-Heaps ◽  
R Leslie

Prometaphase in two large species of diatoms is examined, using the following techniques: (a) time-lapse cinematography of chromosome movements in vivo; (b) electron microscopy of corresponding stages: (c) reconstruction of the microtubules (MTs) in the kinetochore fiber of chromosomes attached to the spindle. In vivo, the chromosomes independently commence oscillations back and forth to one pole. The kinetochore is usually at the leading edge of such chromosome movements; a variable time later both kinetochores undergo such oscillations but toward opposite poles and soon stretch poleward to establish stable bipolar attachment. Electron microscopy of early prometaphase shows that the kinetochores usually laterally associate with MTs that have one end attached to the spindle pole. At late prometaphase, most chromosomes are fully attached to the spindle, but the kinetochores on unattached chromosomes are bare of MTs. Reconstruction of the kinetochore fiber demonstrates that most of its MTs (96%) extend past the kinetochore and are thus apparently not nucleated there. At least one MT terminates at each kinetochore analyzed. Our interpretation is that the conventional view of kinetochore function cannot apply to diatoms. The kinetochore fiber in diatoms appears to be primarily composed of MTs from the poles, in contrast to the conventional view that many MTs of the kinetochore fiber are nucleated by the kinetochore. Similarly, chromosomes appear to initially orient their kinetochores to opposite poles by moving along MTs attached to the poles, instead of orientation effected by kinetochore MTs laterally associating with other MTs in the spindle. The function of the kinetochore in diatoms and other cell types is discussed.


1998 ◽  
Vol 10 (8) ◽  
pp. 535 ◽  
Author(s):  
T. A. Pelton ◽  
M. D. Bettess ◽  
J. Lake ◽  
J. Rathjen ◽  
P. D. Rathjen

Early mammalian embryogenesis is characterised by the coordinated proliferation, differentiation, migration and apoptosis of a pluripotent cell pool that is able to give rise to extraembryonic lineages and all the cell types of the embryo proper. These cells retain pluripotent differentiation capability, defined in this paper as the ability to form all cell types of the embryo and adult, until differentiation into the three embryonic germ layers at gastrulation. Our understanding of pluripotent cell biology and molecular regulation has been hampered by the difficulties associated with experimental manipulation of these cells in vivo. However, a more detailed understanding of pluripotent cell behaviour is emerging from the application of molecular technologies to early mouse embryogenesis. The construction of mouse mutants by gene targeting, mapping of gene expression in vivo, and modelling of cell decisions in vitro are providing insight into the cellular origin, identity and action of key developmental regulators, and the nature of pluripotent cells themselves. In this review we discuss the properties of early embryonic pluripotent cells in vitro and in vivo, focusing on progression from inner cell mass (ICM) cells in the blastocyst to the onset of gastrulation.


2001 ◽  
Vol 6 (4) ◽  
pp. 245-254 ◽  
Author(s):  
Anne E. Regelin ◽  
Erhard Fernholz ◽  
Harald F. Krug ◽  
Ulrich Massing

Lipofection, the transfer of genetic material into cells by means of cationic lipids, is of growing interest for in vitro and in vivo approaches. In order to identify ideal lipofection reagents in a HTS, we have developed an automated lipofection method for the transfer of reporter genes into cells and for determination of the lipofection results. The method has specifically been designed and optimized for 96-well microtiter plates and can successfully be carried out by a pipetting robot with accessory equipment. It consists of two separate parts: (1) pretransfection (preparation of liposomes, formation of lipoplexes, and lipoplex transfer to the cells) and (2) posttransfection (determination of the reporter enzyme activity and the protein content of the transfected cells). Individual steps of the lipofection method were specifically optimized—for example, lipoplex formation and incubation time as well as cell lysis, cell cultivating, and the reporter gene assay. The HTS method facilitates characterization of the transfection properties (efficiency and cytotoxicity) of large numbers of (cationic) lipids in various adherent cell types.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Sergey Rodin ◽  
Liselotte Antonsson ◽  
Colin Niaudet ◽  
Oscar E. Simonson ◽  
Elina Salmela ◽  
...  

Abstract Lack of robust methods for establishment and expansion of pluripotent human embryonic stem (hES) cells still hampers development of cell therapy. Laminins (LN) are a family of highly cell-type specific basement membrane proteins important for cell adhesion, differentiation, migration and phenotype stability. Here we produce and isolate a human recombinant LN-521 isoform and develop a cell culture matrix containing LN-521 and E-cadherin, which both localize to stem cell niches in vivo. This matrix allows clonal derivation, clonal survival and long-term self-renewal of hES cells under completely chemically defined and xeno-free conditions without ROCK inhibitors. Neither LN-521 nor E-cadherin alone enable clonal survival of hES cells. The LN-521/E-cadherin matrix allows hES cell line derivation from blastocyst inner cell mass and single blastomere cells without a need to destroy the embryo. This method can facilitate the generation of hES cell lines for development of different cell types for regenerative medicine purposes.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Jennifer D Cohen ◽  
Alessandro P Sparacio ◽  
Alexandra C Belfi ◽  
Rachel Forman-Rubinsky ◽  
David H Hall ◽  
...  

Biological tubes must develop and maintain their proper diameter to transport materials efficiently. These tubes are molded and protected in part by apical extracellular matrices (aECMs) that line their lumens. Despite their importance, aECMs are difficult to image in vivo and therefore poorly understood. The Caenorhabditis elegans vulva has been a paradigm for understanding many aspects of organogenesis. Here we describe the vulva luminal matrix, which contains chondroitin proteoglycans, Zona Pellucida (ZP) domain proteins, and other glycoproteins and lipid transporters related to those in mammals. Confocal and transmission electron microscopy revealed, with unprecedented detail, a complex and dynamic aECM. Different matrix factors assemble on the apical surfaces of each vulva cell type, with clear distinctions seen between Ras-dependent (1°) and Notch-dependent (2°) cell types. Genetic perturbations suggest that chondroitin and other aECM factors together generate a structured scaffold that both expands and constricts lumen shape.


Author(s):  
Jennifer D. Cohen ◽  
Alessandro P. Sparacio ◽  
Alexandra C. Belfi ◽  
Rachel Forman-Rubinsky ◽  
David H. Hall ◽  
...  

AbstractBiological tubes must develop and maintain their proper diameter in order to transport materials efficiently. These tubes are molded and protected in part by apical extracellular matrices (aECMs) that line their lumens. Despite their importance, aECMs are difficult to image in vivo and therefore poorly understood. The C. elegans vulva has been a paradigm for understanding many aspects of organogenesis. Here we describe the vulva luminal matrix, which contains chondroitin proteoglycans, Zona Pellucida (ZP) domain proteins, and other glycoproteins and lipid transporters related to those in mammals. Confocal and transmission electron microscopy revealed, with unprecedented detail, a complex and dynamic aECM. Different matrix factors assemble on the apical surfaces of each vulva cell type, with clear distinctions seen between Ras-dependent (1°) and Notch-dependent (2°) cell types. Genetic perturbations suggest that chondroitin and other aECM factors together generate a structured scaffold that both expands and constricts lumen shape.


It is now clear from work on defined cell types on artificial substrates that various chemical and physical inhomogeneities in the substrates can guide cell locomotion. It is also becoming clear that less well defined inhomogeneities in living cell substrates can guide the normal locomotion of embryonic migratory cells in vivo. The primordial germ cells (p.g.cs) of early anuran amphibian embryos are proving a useful model for the study of cell migration. When isolated from the embryo and cultured on living cellular substrate, p.g.cs become oriented by the shapes of the underlying cells or by their stress fibre cytoskeleton, or both. A combination of scanning and transmission electron microscopy in vivo shows a clearly aligned cellular substrate for p.g.c. migration along part of their route. Furthermore, we find that the glycoprotein fibronectin is involved in p.g.c. adhesion, which suggests a link between orientation of the substrate cells and p.g.c. guidance.


2012 ◽  
Vol 279 (1744) ◽  
pp. 3976-3980 ◽  
Author(s):  
James F. Gillooly ◽  
April Hayward ◽  
Chen Hou ◽  
J. Gordon Burleigh

A better understanding of the factors that govern individual cell lifespan and the replicative capacity of cells (i.e. Hayflick's limit) is important for addressing disease progression and ageing. Estimates of cell lifespan in vivo and the replicative capacity of cell lines in culture vary substantially both within and across species, but the underlying reasons for this variability remain unclear. Here, we address this issue by presenting a quantitative model of cell lifespan and cell replicative capacity. The model is based on the relationship between cell mortality and metabolic rate, which is supported with data for different cell types from ectotherms and endotherms. These data indicate that much of the observed variation in cell lifespan and cell replicative capacity is explained by differences in cellular metabolic rate, and thus by the three primary factors that control metabolic rate: organism size, organism temperature and cell size. Individual cell lifespan increases as a power law with both body mass and cell mass, and decreases exponentially with increasing temperature. The replicative capacity of cells also increases with body mass, but is independent of temperature. These results provide a point of departure for future comparative studies of cell lifespan and replicative capacity in the laboratory and in the field.


Sign in / Sign up

Export Citation Format

Share Document