Symbiotic bacteria of helminths: what role may they play in ecosystems under anthropogenic stress?

2016 ◽  
Vol 90 (6) ◽  
pp. 647-657 ◽  
Author(s):  
N.J. Morley

AbstractSymbiotic bacteria are a common feature of many animals, particularly invertebrates, from both aquatic and terrestrial habitats. These bacteria have increasingly been recognized as performing an important role in maintaining invertebrate health. Both ecto- and endoparasitic helminths have also been found to harbour a range of bacterial species which provide a similar function. The part symbiotic bacteria play in sustaining homeostasis of free-living invertebrates exposed to anthropogenic pressure (climate change, pollution), and the consequences to invertebrate populations when their symbionts succumb to poor environmental conditions, are increasingly important areas of research. Helminths are also susceptible to environmental stress and their symbiotic bacteria may be a key aspect of their responses to deteriorating conditions. This article summarizes the ecophysiological relationship helminths have with symbiotic bacteria and the role they play in maintaining a healthy parasite and the relevance of specific changes that occur in free-living invertebrate–bacteria interactions under anthropogenic pressure to helminths and their bacterial communities. It also discusses the importance of understanding the mechanistic sensitivity of helminth–bacteria relationships to environmental stress for comprehending the responses of parasites to challenging conditions.

2021 ◽  
Vol 9 ◽  
Author(s):  
William Soto ◽  
Michele K. Nishiguchi

Symbiotic bacteria in the Vibrionaceae are a dynamic group of γ-Proteobacteria that are commonly found throughout the world. Although they primarily are free-living in the environment, they can be commonly found associated with various Eukarya, either as beneficial or pathogenic symbionts. Interestingly, this dual lifestyle (free-living or in symbiosis) enables the bacteria to have enormous ecological breadth, where they can accommodate a variety of stresses in both stages. Here, we discuss some of the most common stressors that Vibrio bacteria encounter when in their free-living state or associated with an animal host, and how some of the mechanisms that are used to cope with these stressors can be used as an evolutionary advantage that increases their diversity both in the environment and within their specific hosts.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zichao Deng ◽  
Shouchang Chen ◽  
Ping Zhang ◽  
Xu Zhang ◽  
Jonathan M. Adams ◽  
...  

In the context of global warming, changes in phytoplankton-associated bacterial communities have the potential to change biogeochemical cycling and food webs in marine ecosystems. Skeletonema is a cosmopolitan diatom genus in coastal waters worldwide. Here, we grew a Skeletonema strain with its native bacterial assemblage at different temperatures and examined cell concentrations of Skeletonema sp. and free-living bacteria, dissolved organic carbon (DOC) concentrations of cultures, and the community structure of both free-living and attached bacteria at different culture stages. The results showed that elevated temperature increased the specific growth rates of both Skeletonema and free-living bacteria. Different growth stages had a more pronounced effect on community structure compared with temperatures and different physical states of bacteria. The effects of temperature on the structure of the free-living bacterial community were more pronounced compared with diatom-attached bacteria. Carbon metabolism genes and those for some specific amino acid pathways were found to be positively correlated with elevated temperature, which may have profound implications on the oceanic carbon cycle and the marine microbial loop. Network analysis revealed evidence of enhanced cooperation with an increase in positive interactions among different bacteria at elevated temperature. This may help the whole community to overcome the stress of elevated temperature. We speculate that different bacterial species may build more integrated networks with a modified functional profile of the whole community to cope with elevated temperature. This study contributes to an improved understanding of the response of diatom-associated bacterial communities to elevated temperature.


2011 ◽  
Vol 4 ◽  
pp. MBI.S6948 ◽  
Author(s):  
Magdy Bahgat

Effect of pollution on diversity of attached and free-living bacteria in two contrasting stations, namely, Suez Canal and outlet of West Lagoon to Lake Timsah was investigated. Bacillus was the most abundant genus especially in West Lagoon station where higher organic agricultural and municipal loads was discharged. Bacterial species richness differed among water depths and was higher in subsurface samples. In Suez Canal more Gram negative populations were isolated. The possible influences of pollution in the West Lagoon station on the bacterial community composition were discussed.


2020 ◽  
Vol 96 (3) ◽  
Author(s):  
Gavin J Fenske ◽  
Sudeep Ghimire ◽  
Linto Antony ◽  
Jane Christopher-Hennings ◽  
Joy Scaria

ABSTRACT Bacterial communities resident in the hindgut of pigs, have profound impacts on health and disease. Investigations into the pig microbiome have utilized either culture-dependent, or far more commonly, culture-independent techniques using next generation sequencing. We contend that a combination of both approaches generates a more coherent view of microbiome composition. In this study, we surveyed the microbiome of Tamworth breed and feral pigs through the integration high throughput culturing and shotgun metagenomics. A single culture medium was used for culturing. Selective screens were added to the media to increase culture diversity. In total, 46 distinct bacterial species were isolated from the Tamworth and feral samples. Selective screens successfully shifted the diversity of bacteria on agar plates. Tamworth pigs are highly dominated by Bacteroidetes primarily composed of the genus Prevotella whereas feral samples were more diverse with almost equal proportions of Firmicutes and Bacteroidetes. The combination of metagenomics and culture techniques facilitated a greater retrieval of annotated genes than either method alone. The single medium based pig microbiota library we report is a resource to better understand pig gut microbial ecology and function. It allows for assemblage of defined bacterial communities for studies in bioreactors or germfree animal models.


2016 ◽  
Vol 11 (4) ◽  
pp. 679-694 ◽  
Author(s):  
Sonja Ayeb-Karlsson ◽  
Kees van der Geest ◽  
Istiakh Ahmed ◽  
Saleemul Huq ◽  
Koko Warner

2007 ◽  
Vol 73 (21) ◽  
pp. 6864-6869 ◽  
Author(s):  
Diana Axelsson-Olsson ◽  
Patrik Ellstr�m ◽  
Jonas Waldenstr�m ◽  
Paul D. Haemig ◽  
Lars Brudin ◽  
...  

ABSTRACT In this study, we present a novel method to isolate and enrich low concentrations of Campylobacter pathogens. This method, Acanthamoeba-Campylobacter coculture (ACC), is based on the intracellular survival and multiplication of Campylobacter species in the free-living protozoan Acanthamoeba polyphaga. Four of the Campylobacter species relevant to humans and livestock, Campylobacter jejuni, C. coli, C. lari, and C. hyointestinalis, were effectively enriched by the coculture method, with growth rates comparable to those observed in other Campylobacter enrichment media. Studying six strains of C. jejuni isolated from different sources, we found that all of the strains could be enriched from an inoculum of fewer than 10 bacteria. The sensitivity of the ACC method was not negatively affected by the use of Campylobacter-selective antibiotics in the culture medium, but these were effective in suppressing the growth of seven different bacterial species added at a concentration of 104 CFU/ml of each species as deliberate contamination. The ACC method has advantages over other enrichment methods as it is not dependent on a microaerobic milieu and does not require the use of blood or other oxygen-quenching agents. Our study found the ACC method to be a promising tool for the enrichment of Campylobacter species, particularly from water samples with low bacterial concentrations.


2017 ◽  
Vol 199 (18) ◽  
Author(s):  
Reed M. Stubbendieck ◽  
Paul D. Straight

ABSTRACT Bacteria use two-component signaling systems to adapt and respond to their competitors and changing environments. For instance, competitor bacteria may produce antibiotics and other bioactive metabolites and sequester nutrients. To survive, some species of bacteria escape competition through antibiotic production, biofilm formation, or motility. Specialized metabolite production and biofilm formation are relatively well understood for bacterial species in isolation. How bacteria control these functions when competitors are present is not well studied. To address fundamental questions relating to the competitive mechanisms of different species, we have developed a model system using two species of soil bacteria, Bacillus subtilis and Streptomyces sp. strain Mg1. Using this model, we previously found that linearmycins produced by Streptomyces sp. strain Mg1 cause lysis of B. subtilis cells and degradation of colony matrix. We identified strains of B. subtilis with mutations in the two-component signaling system yfiJK operon that confer dual phenotypes of specific linearmycin resistance and biofilm morphology. We determined that expression of the ATP-binding cassette (ABC) transporter yfiLMN operon, particularly yfiM and yfiN, is necessary for biofilm morphology. Using transposon mutagenesis, we identified genes that are required for YfiLMN-mediated biofilm morphology, including several chaperones. Using transcriptional fusions, we found that YfiJ signaling is activated by linearmycins and other polyene metabolites. Finally, using a truncated YfiJ, we show that YfiJ requires its transmembrane domain to activate downstream signaling. Taken together, these results suggest coordinated dual antibiotic resistance and biofilm morphology by a single multifunctional ABC transporter promotes competitive fitness of B. subtilis. IMPORTANCE DNA sequencing approaches have revealed hitherto unexplored diversity of bacterial species in a wide variety of environments that includes the gastrointestinal tract of animals and the rhizosphere of plants. Interactions between different species in bacterial communities have impacts on our health and industry. However, many approaches currently used to study whole bacterial communities do not resolve mechanistic details of interspecies interactions, including how bacteria sense and respond to their competitors. Using a competition model, we have uncovered dual functions for a previously uncharacterized two-component signaling system involved in specific antibiotic resistance and biofilm morphology. Insights gleaned from signaling within interspecies interaction models build a more complete understanding of gene functions important for bacterial communities and will enhance community-level analytical approaches.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Loren Billet ◽  
Marion Devers ◽  
Nadine Rouard ◽  
Fabrice Martin-Laurent ◽  
Aymé Spor

AbstractMicrobial communities are pivotal in the biodegradation of xenobiotics including pesticides. In the case of atrazine, multiple studies have shown that its degradation involved a consortia rather than a single species, but little is known about how interdependency between the species composing the consortium is set up. The Black Queen Hypothesis (BQH) formalized theoretically the conditions leading to the evolution of dependency between species: members of the community called ‘helpers’ provide publicly common goods obtained from the costly degradation of a compound, while others called ‘beneficiaries’ take advantage of the public goods, but lose access to the primary resource through adaptive degrading gene loss. Here, we test whether liquid media supplemented with the herbicide atrazine could support coexistence of bacterial species through BQH mechanisms. We observed the establishment of dependencies between species through atrazine degrading gene loss. Labour sharing between members of the consortium led to coexistence of multiple species on a single resource and improved atrazine degradation potential. Until now, pesticide degradation has not been approached from an evolutionary perspective under the BQH framework. We provide here an evolutionary explanation that might invite researchers to consider microbial consortia, rather than single isolated species, as an optimal strategy for isolation of xenobiotics degraders.


Sign in / Sign up

Export Citation Format

Share Document