Integration of culture-dependent and independent methods provides a more coherent picture of the pig gut microbiome

2020 ◽  
Vol 96 (3) ◽  
Author(s):  
Gavin J Fenske ◽  
Sudeep Ghimire ◽  
Linto Antony ◽  
Jane Christopher-Hennings ◽  
Joy Scaria

ABSTRACT Bacterial communities resident in the hindgut of pigs, have profound impacts on health and disease. Investigations into the pig microbiome have utilized either culture-dependent, or far more commonly, culture-independent techniques using next generation sequencing. We contend that a combination of both approaches generates a more coherent view of microbiome composition. In this study, we surveyed the microbiome of Tamworth breed and feral pigs through the integration high throughput culturing and shotgun metagenomics. A single culture medium was used for culturing. Selective screens were added to the media to increase culture diversity. In total, 46 distinct bacterial species were isolated from the Tamworth and feral samples. Selective screens successfully shifted the diversity of bacteria on agar plates. Tamworth pigs are highly dominated by Bacteroidetes primarily composed of the genus Prevotella whereas feral samples were more diverse with almost equal proportions of Firmicutes and Bacteroidetes. The combination of metagenomics and culture techniques facilitated a greater retrieval of annotated genes than either method alone. The single medium based pig microbiota library we report is a resource to better understand pig gut microbial ecology and function. It allows for assemblage of defined bacterial communities for studies in bioreactors or germfree animal models.

2019 ◽  
Vol 8 (10) ◽  
Author(s):  
Marcela C. Goulart ◽  
Luis G. Cueva‐Yesquén ◽  
Kelly J. Hidalgo Martinez ◽  
Derlene Attili‐Angelis ◽  
Fabiana Fantinatti‐Garboggini

2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Tobin J. Hammer ◽  
Jacob C. Dickerson ◽  
W. Owen McMillan ◽  
Noah Fierer

ABSTRACT Lepidoptera (butterflies and moths) are diverse and ecologically important, yet we know little about how they interact with microbes as adults. Due to metamorphosis, the form and function of their adult-stage microbiomes might be very different from those of microbiomes in the larval stage (caterpillars). We studied adult-stage microbiomes of Heliconius and closely related passion-vine butterflies (Heliconiini), which are an important model system in evolutionary biology. To characterize the structure and dynamics of heliconiine microbiomes, we used field collections of wild butterflies, 16S rRNA gene sequencing, quantitative PCR, and shotgun metagenomics. We found that Heliconius butterflies harbor simple and abundant bacterial communities that are moderately consistent among conspecific individuals and over time. Heliconiine microbiomes also exhibited a strong signal of the host phylogeny, with a major distinction between Heliconius and other butterflies. These patterns were largely driven by differing relative abundances of bacterial phylotypes shared among host species and genera, as opposed to the presence or absence of host-specific phylotypes. We suggest that the phylogenetic structure in heliconiine microbiomes arises from conserved host traits that differentially filter microbes from the environment. While the relative importance of different traits remains unclear, our data indicate that pollen feeding (unique to Heliconius) is not a primary driver. Using shotgun metagenomics, we also discovered trypanosomatids and microsporidia to be prevalent in butterfly guts, raising the possibility of antagonistic interactions between eukaryotic parasites and colocalized gut bacteria. Our discovery of characteristic and phylogenetically structured microbiomes provides a foundation for tests of adult-stage microbiome function, a poorly understood aspect of lepidopteran biology. IMPORTANCE Many insects host microbiomes with important ecological functions. However, the prevalence of this phenomenon is unclear because in many insect taxa, microbiomes have been studied in only part of the life cycle, if at all. A prominent example is butterflies and moths, in which the composition and functional role of adult-stage microbiomes are largely unknown. We comprehensively characterized microbiomes in adult passion-vine butterflies. Butterfly-associated bacterial communities are generally abundant in guts, consistent within populations, and composed of taxa widely shared among hosts. More closely related butterflies harbor more similar microbiomes, with the most dramatic shift in microbiome composition occurring in tandem with a suite of ecological and life history traits unique to the genus Heliconius. Butterflies are also frequently infected with previously undescribed eukaryotic parasites, which may interact with bacteria in important ways. These findings advance our understanding of butterfly biology and insect-microbe interactions generally.


Author(s):  
Jaime Ramirez ◽  
Francisco Guarner ◽  
Luis Bustos Fernandez ◽  
Aldo Maruy ◽  
Vera Lucia Sdepanian ◽  
...  

Advances in culture-independent research techniques have led to an increased understanding of the gut microbiota and the role it plays in health and disease. The intestine is populated by a complex microbial community that is organized around a network of metabolic interdependencies. It is now understood that the gut microbiota is vital for normal development and functioning of the human body, especially for the priming and maturation of the adaptive immune system. Antibiotic use can have several negative effects on the gut microbiota, including reduced species diversity, altered metabolic activity, and the selection of antibiotic-resistant organisms, which in turn can lead to antibiotic-associated diarrhea and recurrent Clostridioides difficile infections. There is also evidence that early childhood exposure to antibiotics can lead to several gastrointestinal, immunologic, and neurocognitive conditions. The increase in the use of antibiotics in recent years suggests that these problems are likely to become more acute or more prevalent in the future. Continued research into the structure and function of the gut microbiota is required to address this challenge.


2021 ◽  
Author(s):  
Artur Trzebny ◽  
Anna Slodkowicz-Kowalska ◽  
Johanna Björkroth ◽  
Miroslawa Dabert

AbstractThe animal gut microbiota consist of many different microorganisms, mainly bacteria, but archaea, fungi, protozoans, and viruses may also be present. This complex and dynamic community of microorganisms may change during parasitic infection. In the present study, we investigated the effect of the presence of microsporidians on the composition of the mosquito gut microbiota and linked some microbiome taxa and functionalities to infections caused by these parasites. We characterised bacterial communities of 188 mosquito females, of which 108 were positive for microsporidian DNA. To assess how bacterial communities change during microsporidian infection, microbiome structures were identified using 16S rRNA microbial profiling. In total, we identified 46 families and four higher taxa, of which Comamonadaceae, Enterobacteriaceae, Flavobacteriaceae and Pseudomonadaceae were the most abundant mosquito-associated bacterial families. Our data suggest that the mosquito gut microbial composition varies among host species. In addition, we found a correlation between the microbiome composition and the presence of microsporidians. The prediction of metagenome functional content from the 16S rRNA gene sequencing suggests that microsporidian infection is characterised by some bacterial species capable of specific metabolic functions, especially the biosynthesis of ansamycins and vancomycin antibiotics and the pentose phosphate pathway. Moreover, we detected a positive correlation between the presence of microsporidian DNA and bacteria belonging to Spiroplasmataceae and Leuconostocaceae, each represented by a single species, Spiroplasma sp. PL03 and Weissella cf. viridescens, respectively. Additionally, W. cf. viridescens was observed only in microsporidian-infected mosquitoes. More extensive research, including intensive and varied host sampling, as well as determination of metabolic activities based on quantitative methods, should be carried out to confirm our results.


2021 ◽  
Author(s):  
Robin Mesnage ◽  
Ruth C E Bowyer ◽  
Souleiman El Balkhi ◽  
Franck Saint-Marcoux ◽  
Arnaud Gardere ◽  
...  

Concerns have been raised as to whether the consumption of foodstuffs contaminated with pesticides can contribute to the development of chronic human diseases by affecting microbial community function in the gut. We provide the first associations between urinary pesticide excretion and the composition and function of the faecal microbiome in 65 twin pairs in the UK. Biomonitoring of exposure to 186 common insecticide, herbicide, or fungicide residues showed the presence of pyrethroid and/or organophosphorus insecticide residues in all urine samples, while the herbicide glyphosate was found in 45% of individuals. Other pesticides such as DEET, imidacloprid or dithiocarbamate fungicides were less frequently detected. While the geographic location or the rural/urban environment had no influence on pesticide urinary excretion, food frequency questionnaires showed that DMTP levels, a metabolite of organophosphates, was higher with increased consumption of fruit and vegetables. Multivariable association between urinary pesticide excretion and faecal microbial composition and function were determined with shotgun metagenomics and metabolomics. A total of 34 associations between pesticide residues concentrations and faecal metabolite concentrations were detected. Glyphosate excretion was positively associated to an increased bacterial species richness, as well as to fatty acid metabolites and phosphate levels. The insecticide metabolite Br2CA, reflecting deltamethrin exposure, was positively associated with the mammalian phytoestrogens enterodiol and enterolactone, and negatively associated with some N-methyl amino acids. Urine metabolomics performed on a subset of samples did not reveal associations with the excretion of pesticide residues. Our results highlight the need for future interventional studies to understand effects of pesticide exposure on the gut microbiome and possible health consequences.


2015 ◽  
Vol 61 (2) ◽  
pp. 90-94 ◽  
Author(s):  
Mor Nitzan ◽  
Sefi Mintzer ◽  
Hanah Margalit

The human microbiome is dynamic and unique to each individual, and its role is being increasingly recognized in healthy physiology and in disease, including gastrointestinal and neuropsychiatric disorders. Therefore, characterizing the human microbiome and the factors that shape its bacterial population, how they are related to host-specific attributes, and understanding the ways in which it can be manipulated and the phenotypic consequences of such manipulations are of great importance. Characterization of the microbiome so far has been mostly based on compositional studies alone, where relative abundances of different species are compared in different conditions, such as health and disease. However, inter-relationships among the bacterial species, such as competition and cooperation over metabolic resources, may be an important factor that affects the structure and function of the microbiome. Here we review the network-based approaches in answering such questions and explore the first attempts that focus on the interactions facet, complementing compositional studies, towards understanding the microbiome structure and its complex relationship with the human host.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5208 ◽  
Author(s):  
Nyree J. West ◽  
Delphine Parrot ◽  
Claire Fayet ◽  
Martin Grube ◽  
Sophie Tomasi ◽  
...  

The microbial diversity and function of terrestrial lichens have been well studied, but knowledge about the non-photosynthetic bacteria associated with marine lichens is still scarce. 16S rRNA gene Illumina sequencing was used to assess the culture-independent bacterial diversity in the strictly marine cyanolichen speciesLichina pygmaeaandLichina confinis, and the maritime chlorolichen speciesXanthoria aureolawhich occupy different areas on the littoral zone. Inland terrestrial cyanolichens from Austria were also analysed as for the marine lichens to examine further the impact of habitat/lichen species on the associated bacterial communities. TheL. confinisandL. pygmaeacommunities were significantly different from those of the maritimeXanthoria aureolalichen found higher up on the littoral zone and these latter communities were more similar to those of the inland terrestrial lichens. The strictly marine lichens were dominated by the Bacteroidetes phylum accounting for 50% of the sequences, whereas Alphaproteobacteria, notablySphingomonas, dominated the maritime and the inland terrestrial lichens. Bacterial communities associated with the twoLichinaspecies were significantly different sharing only 33 core OTUs, half of which were affiliated to the Bacteroidetes generaRubricoccus,TunicatimonasandLewinella, suggesting an important role of these species in the marineLichinalichen symbiosis. Marine cyanolichens showed a higher abundance of OTUs likely affiliated to moderately thermophilic and/or radiation resistant bacteria belonging to the Phyla Chloroflexi, Thermi, and the families Rhodothermaceae and Rubrobacteraceae when compared to those of inland terrestrial lichens. This most likely reflects the exposed and highly variable conditions to which they are subjected daily.


2021 ◽  
Vol 7 ◽  
Author(s):  
Elisavet Stavropoulou ◽  
Konstantia Kantartzi ◽  
Christina Tsigalou ◽  
Theoharis Konstantinidis ◽  
Gioulia Romanidou ◽  
...  

The recent new developments in technology with culture-independent techniques including genome sequencing methodologies shed light on the identification of microbiota bacterial species and their role in health and disease. Microbiome is actually reported as an important predictive tool for evaluating characteristic shifts in case of disease. Our present review states the development of different renal diseases and pathologies linked to the intestinal dysbiosis, which impacts on host homeostasis. The gastrointestinal–kidney dialogue provides intriguing features in the pathogenesis of several renal diseases. Without any doubt, investigation of this interconnection consists one of the most cutting-edge areas of research with potential implications on our health.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zheng Wang ◽  
Mykhaylo Usyk ◽  
Yoshiki Vázquez-Baeza ◽  
Guo-Chong Chen ◽  
Carmen R. Isasi ◽  
...  

Abstract Background Obesity and related comorbidities are major health concerns among many US immigrant populations. Emerging evidence suggests a potential involvement of the gut microbiome. Here, we evaluated gut microbiome features and their associations with immigration, dietary intake, and obesity in 2640 individuals from a population-based study of US Hispanics/Latinos. Results The fecal shotgun metagenomics data indicate that greater US exposure is associated with reduced ɑ-diversity, reduced functions of fiber degradation, and alterations in individual taxa, potentially related to a westernized diet. However, a majority of gut bacterial genera show paradoxical associations, being reduced with US exposure and increased with fiber intake, but increased with obesity. The observed paradoxical associations are not explained by host characteristics or variation in bacterial species but might be related to potential microbial co-occurrence, as seen by positive correlations among Roseburia, Prevotella, Dorea, and Coprococcus. In the conditional analysis with mutual adjustment, including all genera associated with both obesity and US exposure in the same model, the positive associations of Roseburia and Prevotella with obesity did not persist, suggesting that their positive associations with obesity might be due to their co-occurrence and correlations with obesity-related taxa, such as Dorea and Coprococcus. Conclusions Among US Hispanics/Latinos, US exposure is associated with unfavorable gut microbiome profiles for obesity risk, potentially related to westernized diet during acculturation. Microbial co-occurrence could be an important factor to consider in future studies relating individual gut microbiome taxa to environmental factors and host health and disease.


Sign in / Sign up

Export Citation Format

Share Document