scholarly journals Electrostatic stability of electron–positron plasmas in dipole geometry

2018 ◽  
Vol 84 (2) ◽  
Author(s):  
Alexey Mishchenko ◽  
Gabriel G. Plunk ◽  
Per Helander

The electrostatic stability of electron–positron plasmas is investigated in the point-dipole and Z-pinch limits of dipole geometry. The kinetic dispersion relation for sub-bounce-frequency instabilities is derived and solved. For the zero-Debye-length case, the stability diagram is found to exhibit singular behaviour. However, when the Debye length is non-zero, a fluid mode appears, which resolves the observed singularity, and also demonstrates that both the temperature and density gradients can drive instability. It is concluded that a finite Debye length is necessary to determine the stability boundaries in parameter space. Landau damping is investigated at scales sufficiently smaller than the Debye length, where instability is absent.

1983 ◽  
Vol 30 (1) ◽  
pp. 169-178 ◽  
Author(s):  
Ulrich Schaper

A dispersion relation is derived for axisymmetric perturbations of an infinitely extended circular incompressible Z pinch with a step-like volume current profile. This profile is characterized by constant but different volume currents in different regions of the plasma and at the step surface there is a sheet current. The stability boundaries are shifted compared with stability limits in ideal MHD theory. For equilibria with no current reversal there is a new stable range whereas for equilibria with current reversal there is a new unstable range. The number of solutions of the dispersion relation depends on the equilibrium. The behaviour of the eigenvalues near the stability boundaries is treated in accordance with bifurcation theory.


2016 ◽  
Vol 82 (3) ◽  
Author(s):  
P. Helander ◽  
J. W. Connor

The linear gyrokinetic stability properties of magnetically confined electron–positron plasmas are investigated in the parameter regime most likely to be relevant for the first laboratory experiments involving such plasmas, where the density is small enough that collisions can be ignored and the Debye length substantially exceeds the gyroradius. Although the plasma beta is very small, electromagnetic effects are retained, but magnetic compressibility can be neglected. The work of a previous publication (Helander, Phys. Rev. Lett., vol. 113, 2014a, 135003) is thus extended to include electromagnetic instabilities, which are of importance in closed-field-line configurations, where such instabilities can occur at arbitrarily low pressure. It is found that gyrokinetic instabilities are completely absent if the magnetic field is homogeneous: any instability must involve magnetic curvature or shear. Furthermore, in dipole magnetic fields, the stability threshold for interchange modes with wavelengths exceeding the Debye radius coincides with that in ideal magnetohydrodynamics. Above this threshold, the quasilinear particle flux is directed inward if the temperature gradient is sufficiently large, leading to spontaneous peaking of the density profile.


2013 ◽  
Vol 79 (5) ◽  
pp. 587-596 ◽  
Author(s):  
N. L. TSINTSADZE ◽  
R. CHAUDHARY ◽  
A. RASHEED

AbstractRelativistically hot electron–positron–ion (EPI) plasmas in the presence of relativistic intense electromagnetic (EM) radiation that are not in thermal equilibrium are studied by following a modified plasma particle distribution function. By means of a kinetic description, soliton solution is obtained for a small amplitude EM wave, whereas for large amplitude EM waves a cusp soliton solution is obtained. A general expression of positron density oscillations is obtained for long wavelength in comparison with the Debye length of electrons, and is discussed for special cases. Dispersion relations for a new type of longitudinal waves with slow damping is formulated as a consequence of resonant wave–particle interaction, and the necessary conditions for the existence of positron sound waves are obtained. Furthermore, for ultrarelativistic electrons and non-relativistic positrons, quasi positron sound waves dispersion relation in the intermediate wave range is obtained. It is shown that the modulation of amplitude of relativistic EM waves leads to instability for the rare plasma. Finally, we have obtained the relativistic kinetic nonlinear Schrödinger equation (KNLS) with local and non-local nonlinearities. The KNLS equation depicts nonlinear Landau damping rates for intense EM waves, and these damping rates are also examined.


2005 ◽  
Vol 5 (1) ◽  
pp. 3-50 ◽  
Author(s):  
Alexei A. Gulin

AbstractA review of the stability theory of symmetrizable time-dependent difference schemes is represented. The notion of the operator-difference scheme is introduced and general ideas about stability in the sense of the initial data and in the sense of the right hand side are formulated. Further, the so-called symmetrizable difference schemes are considered in detail for which we manage to formulate the unimprovable necessary and su±cient conditions of stability in the sense of the initial data. The schemes with variable weight multipliers are a typical representative of symmetrizable difference schemes. For such schemes a numerical algorithm is proposed and realized for constructing stability boundaries.


2021 ◽  
Vol 11 (11) ◽  
pp. 4833
Author(s):  
Afroja Akter ◽  
Md. Jahedul Islam ◽  
Javid Atai

We study the stability characteristics of zero-velocity gap solitons in dual-core Bragg gratings with cubic-quintic nonlinearity and dispersive reflectivity. The model supports two disjointed families of gap solitons (Type 1 and Type 2). Additionally, asymmetric and symmetric solitons exist in both Type 1 and Type 2 families. A comprehensive numerical stability analysis is performed to analyze the stability of solitons. It is found that dispersive reflectivity improves the stability of both types of solitons. Nontrivial stability boundaries have been identified within the bandgap for each family of solitons. The effects and interplay of dispersive reflectivity and the coupling coefficient on the stability regions are also analyzed.


1993 ◽  
Vol 03 (02) ◽  
pp. 645-668 ◽  
Author(s):  
A. N. SHARKOVSKY ◽  
YU. MAISTRENKO ◽  
PH. DEREGEL ◽  
L. O. CHUA

In this paper, we consider an infinite-dimensional extension of Chua's circuit (Fig. 1) obtained by replacing the left portion of the circuit composed of the capacitance C2 and the inductance L by a lossless transmission line as shown in Fig. 2. As we shall see, if the remaining capacitance C1 is equal to zero, the dynamics of this so-called time-delayed Chua's circuit can be reduced to that of a scalar nonlinear difference equation. After deriving the corresponding 1-D map, it will be possible to determine without any approximation the analytical equation of the stability boundaries of cycles of every period n. Since the stability region is nonempty for each n, this proves rigorously that the time-delayed Chua's circuit exhibits the "period-adding" phenomenon where every two consecutive cycles are separated by a chaotic region.


2013 ◽  
Vol 12 (06) ◽  
pp. 1350045 ◽  
Author(s):  
ANURAG SRIVASTAVA ◽  
BODDEPALLI SANTHIBHUSHAN ◽  
PANKAJ DOBWAL

The present paper discusses the investigation of electronic properties of anthracene-based single electron transistor (SET) operating in coulomb blockade region using Density Functional Theory (DFT) based Atomistix toolkit-Virtual nanolab. The charging energies of anthracene molecule in isolated as well as electrostatic SET environments have been calculated for analyzing the stability of the molecule for different charge states. Study also includes the analysis of SET conductance dependence on source/drain and gate potentials in reference to the charge stability diagram. Our computed charging energies for anthracene in isolated environment are in good agreement with the experimental values and the proposed anthracene SET shows good switching properties in comparison to other acene series SETs.


Author(s):  
Frantisek L. Eisinger ◽  
Robert E. Sullivan

Six burner/furnace systems which operated successfully without vibration are evaluated for resistance to thermoacoustic oscillations. The evaluation is based on the Rijke and Sondhauss models representing the combined burner/furnace (cold/hot) thermoacoustic systems. Frequency differences between the lowest vulnerable furnace acoustic frequencies in the burner axial direction and those of the systems’ Rijke and Sondhauss frequencies are evaluated to check for resonances. Most importantly, the stability of the Rijke and Sondhauss models is checked against the published design stability diagram of Eisinger [1] and Eisinger and Sullivan [2]. It is shown that the resistance to thermoacoustic oscillations is adequately defined by the published design stability diagram to which the evaluated cases generally adhere. Once the system falls into the stable range, the frequency differences or resonances appear to play only a secondary role. It is concluded, however, that in conjunction with stability, the primary criterion, sufficient frequency separations shall also be maintained in the design process to preclude resonances. The paper provides sufficient details to aid the design engineers.


Sign in / Sign up

Export Citation Format

Share Document