osmotic behaviour
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 2)

H-INDEX

20
(FIVE YEARS 1)

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Miguel Gallardo ◽  
Jaime Saenz ◽  
Ramon Risco

Abstract Vitrification of human oocytes and embryos in different stages of development is a key element of daily clinical practice of in vitro fertilization treatments. Despite the cooling and warming of the cells is ultra-fast, the procedure as a whole is time consuming. Most of the duration is employed in a long (8–15 minutes), gradual or direct exposure to a non-vitrifying cryoprotectant solution, which is followed by a short exposure to a more concentrated vitrifying solution. A reduction in the duration of the protocols is desirable to improve the workflow in the IVF setting and reduce the time of exposure to suboptimal temperature and osmolarity, as well as potentially toxic cryoprotectants. In this work it is shown that this reduction is feasible. In silico (MatLab program using two-parameter permeability model) and in vitro observations of the oocytes’ osmotic behaviour indicate that the dehydration upon exposure to standard cryoprotectant solutions occurs very fast: the point of minimum volume of the shrink-swell curve is reached within 60 seconds. At that point, intracellular water ejection is complete, which coupled with the permeation of low molecular weight cryoprotectants results in similar intracellular and extracellular solute concentrations. This shows that prolonging the exposure to the cryoprotectant solutions does not improve the cytosolic glass forming tendency and could be avoided. To test this finding, human oocytes and zygotes that were donated for research were subjected to a shortened, dehydration-based protocol, consisting of two consecutive exposures of one-minute to two standard cryoprotectant solutions, containing ethylene glycol, dimethyl sulfoxide and sucrose. At the end of this two-minute dehydration protocol, the critical intracellular solute concentration necessary for successful vitrification was attained, confirmed by the post-warming survival and ability to resume cytokinesis of the cells. Further studies of the developmental competency of oocytes and embryos would be necessary to determine the suitability of this specific dehydration protocol for clinical practice, but based on our results, short times of exposure to increasingly hypertonic solutions could be a more time-efficient strategy to prepare human oocytes and embryos for vitrification.


2019 ◽  
Vol 151 ◽  
pp. 107296 ◽  
Author(s):  
Elisa Casula ◽  
Gabriele Traversari ◽  
Sarah Fadda ◽  
Oleksiy V. Klymenko ◽  
Cleo Kontoravdi ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (9) ◽  
pp. e0184180 ◽  
Author(s):  
Elisa Casula ◽  
Gino P. Asuni ◽  
Valeria Sogos ◽  
Sarah Fadda ◽  
Francesco Delogu ◽  
...  

Cryobiology ◽  
2016 ◽  
Vol 73 (3) ◽  
pp. 401
Author(s):  
E. Casula ◽  
G. Asuni ◽  
V. Sogos ◽  
S. Fadda ◽  
A. Cincotti
Keyword(s):  

2016 ◽  
Vol 2 (1) ◽  
pp. 323-327
Author(s):  
Jennifer Contreras Lopez ◽  
Lothar Lauterböck ◽  
Birgit Glasmacher

AbstractA successful cryopreservation is based on knowledge of the optimal cooling rate. So far, this is often determined by way of complex parameter studies. Alternatively, the identification of cell specific characteristics, such as osmotic behaviour, membrane hydraulic permeability and activation energy could be used to calculate the optimal cooling rate. These parameters should be determined for supra-zero and sub-zero temperatures. In this study cryomicroscopy was used. Mesenchymal stromal cells (MSCs) from bone marrow were analysed. The determined membrane hydraulic permeability for sub-zero temperatures is significantly lower than that for supra-zero temperatures. On the contrary the activation energy is significantly higher in the presence of ice. The addition of a cryoprotective agent (CPA) such as dimethyl sulfoxid (DMSO) shows an additional influence on the characteristics of the membrane of the cell. The optimal cooling rate was determined with these parameters. For cryopreservation without DMSO the optimal cooling rate was found to be 12.82 K/min. If the MSCs were frozen with 5% (v/v) DMSO the optimal cooling rate is 16.25 K/min.


Author(s):  
Nanacha Afifi Igbokwe ◽  
Ikechukwu Onyebuchi Igbokwe

AbstractBackground:Erythrocyte swelling in non-ionic sucrose media and the subsequent osmotic lysis are influenced by mechanisms of regulatory volume adjustment and osmotic water permeability. Kinetics of transmembrane water and ion fluxes in varied physiologic states may determine the phenotype of erythrocyte osmotic fragility (EOF) and affect estimates of EOF.Methods:Effects of sex, age, late pregnancy (third trimester) and lactation on the haemolysis of Sahel goat erythrocytes incubated in a series of hyposmotic non-ionic sucrose media were investigated.Results:The fragiligram was sigmoidal in 72 (97%) out of 74 goats. Two male (3%) goats with low and high extreme median erythrocyte fragilities (MEF), had non-sigmoidal curves. The mean fragilities at osmolarities of 30–300 mosmol/L of sucrose and the mean osmolarities responsible for 10%–90% haemolysis (CHConclusions:Physiologic states of the goat did not affect EOF phenotype in non-ionic sucrose media. Sigmoidal fragility phenotype seemed to be homogeneously conserved by osmoregulatory mechanisms not partitioned by sex, age, late pregnancy or lactation, but a minor non-sigmoidal curve might have occurred due to altered erythrocyte osmotic behaviour that would require further investigation.


2015 ◽  
Vol 69 (1) ◽  
pp. 67-76 ◽  
Author(s):  
Ivana Kostic ◽  
Vesna Ilic ◽  
Katarina Bukara ◽  
Slavko Mojsilovic ◽  
Zorka Djuric ◽  
...  

Despite the fact that the methods based on the osmotic properties of the cells are the most widely used for loading of drugs in human and animal erythrocytes, data related to the osmotic properties of erythrocytes derived from animal blood are scarce. This work was performed with an aim to investigate the possibility of use the flow cytometry as a tool for determination the osmotic behaviour of porcine and bovine erythrocytes, and thus facilitate the engineering of erythrocytes from animal blood to be drug carriers. The method of flow cytometry successfully provided the information about bovine and porcine erythrocyte osmotic fragility, and made the initial steps in assessment of erythrocyte shape in a large number of erythrocytes. Although this method is not able to confirm the swelling of pig erythrocytes, it indicated to the differences in pig erythrocytes that had basic hematological parameters inside and outside the reference values. In order to apply/use the porcine and bovine erythrocytes as drug carriers, the method of flow cytometry, confirming the presence of osmotically different fractions of red blood cells, indicated that various amounts of the encapsulated drug in porcine and bovine erythrocytes can be expected.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Ivan L. Minkov ◽  
Emil D. Manev ◽  
Svetla V. Sazdanova ◽  
Kiril H. Kolikov

Osmosis is essential for the living organisms. In biological systems the process usually occurs in confined volumes and may express specific features. The osmotic pressure in aqueous solutions was studied here experimentally as a function of solute concentration (0.05–0.5 M) in two different regimes: of constant and variable solution volume. Sucrose, a biologically active substance, was chosen as a reference solute for the complex tests. A custom made osmotic cell was used. A novel operative experimental approach, employing limited variation of the solution volume, was developed and applied for the purpose. The established equilibrium values of the osmotic pressure are in agreement with the theoretical expectations and do not exhibit any evident differences for both regimes. In contrast, the obtained kinetic dependences reveal striking divergence in the rates of the process at constant and varied solution volume for the respective solute concentrations. The rise of pressure is much faster at constant solution volume, while the solvent influx is many times greater in the regime of variable volume. The results obtained suggest a feasible mechanism for the way in which the living cells rapidly achieve osmotic equilibrium upon changes in the environment.


2006 ◽  
Vol 3 (2) ◽  
pp. 105 ◽  
Author(s):  
Tina Kogej ◽  
Cene Gostinčar ◽  
Marc Volkmann ◽  
Anna A. Gorbushina ◽  
Nina Gunde-Cimerman

Environmental Context.The occurrence of fungi in extreme environments, particularly in hypersaline water and in subglacial ice, is much higher than was previously assumed. When glacial ice melts as a result of calving or surface ablations, these organisms are released in the Arctic soil or sea and have a yet uninvestigated impact on the environment. Knowledge of the metabolites of these extremophilic fungi is important because they could provide signature molecules in the environment, but they can also contribute nutrients to the otherwise oligotrophic polar conditions. In the present work, we examine the osmotic behaviour of fungi grown under hypersaline conditions. Abstract.Fungi isolated from hypersaline waters and polar glacial ice were screened for the presence of mycosporines and mycosporine-like amino acids under non-saline and saline growth conditions. Two different mycosporines and three unidentified UV-absorbing compounds were detected by high performance liquid chromatography in fungal isolates from hypersaline waters and polar glacial ice. It was shown for the first time that the mycosporine–glutaminol–glucoside in halophilic and halotolerant black yeasts from salterns was higher on saline growth medium. This substance might act as a supplementary compatible solute in some extremophilic black yeasts exposed to saline growth conditions.


Sign in / Sign up

Export Citation Format

Share Document