Abundance distribution patterns of intertidal bivalves Macoma balthica and Cerastoderma edule at the Murman coast tidal flats (the Barents Sea)

2015 ◽  
Vol 95 (8) ◽  
pp. 1613-1620 ◽  
Author(s):  
Sophia A. Nazarova ◽  
Ksenia Shunkina ◽  
Evgeny A. Genelt-Yanovskiy

Density distribution of the common infaunal bivalves, Macoma balthica and Cerastoderma edule, was studied along the Murman Coast of the Barents Sea during 2002–2010. In both species, abundance was generally higher in West Murman in contrast to East Murman. Highest density of Macoma balthica reaching 1535 ind. m−2 was observed in the Kola Inlet. Cerastoderma edule was less abundant; its density rarely exceeded 10 ind. m−2 in all but one site, where 282 ind. m−2 was registered. Reconstruction of abundance distribution across the European geographic range of Macoma balthica revealed that it does not match an ‘abundant-centre’ pattern, having features of ramped north. On the other hand, distribution of Cerastoderma edule abundance across the range generally follows an ‘abundant-centre’ pattern but southern edge populations show relatively higher abundances as compared with those at the north edge (the Barents Sea).

2020 ◽  
Vol 66 (3) ◽  
pp. 246-266
Author(s):  
V. V. Ivanov ◽  
I. E. Frolov ◽  
K. V. Filchuk

Hydrographic observations, carried out in March-May, 2019 during “Transarktika-2019” expedition onboard R/V “Akademik Tryoshnikov” allowed studying mechanisms of Atlantic Water (AW) transformation in the Barents Sea. Although this research topic is rather traditional for oceanographic studies, there are still a number of questions, which require clarification. Among these is a deeper understanding of the AW transformation in specific regions in cold season, when the coverage by observations is scarce. In this study we performed temperature and salinity (TS) analysis of conductivity — temperature — depth (CTD) data, collected in the north-eastern “corner” of the Barents Sea — this is the area with difficult access in winter due to high concentration of pack ice. The results allowed identification of areas along the pathways of AW branches, where various types of open sea convection and cascading acted as dominant processes of AW properties change. We distinguish several driving mechanisms controlling modification of the waters of Atlantic origin. An advantage of winter measurements is that the active stage of AW transformation mechanisms is explicitly observed at the consecutive CTD sections.


2021 ◽  
pp. 287-306
Author(s):  
A.Yu. Lein ◽  
◽  
A.S. Savvichev ◽  

Biogeochemical processes involving microorganisms play an important role in marine sedimentogenesis. The study of biogeochemical processes in the Barents Sea was carried out from 1997 with interruptions until 2019. Using a complex of geological-geochemical, microbiological, radioisotope and stable isotope methods, it was possible to obtain a quantitative estimate of the total abundance and biomass of microorganisms, rates of biogeochemical processes, methane content and organic matter suspended. In the course of work in four expeditions, it was found that in the surface (0–10 m) water column south of 74° N the magnitude of the total abundance and the biomass of microorganisms increased by 2019 by about 5 times compared to 1998. To the north, in colder waters, the total abundance and the biomass of organisms were lower than in the southern region of the sea. The methane concentration in the surface layer of the water column at the border with the atmosphere did not change much for 20 years (1976–1997) and increased noticeably from 1997 to 2017, from 3.3 to 15.8 nM. The increase in FFM, the biomass of organisms and the concentration of methane in the water column is associated with the melting of glaciers, with the release of organic matter of continental origin released from ice into the water. The results of the work indicate changes in the ecosystem of the Barents Sea.


2021 ◽  
pp. 899-943
Author(s):  
V.A. Shakhverdov ◽  
◽  
D.V. Ryabchuk ◽  
M.A. Spiridonov ◽  
V.A. Zhamoida ◽  
...  

A brief analysis of the history of environmental geological study of the Barents Sea is given. It shows that at the beginning of industrial development the geological environment was characterized by a low level of disturbance and pollution. On example of the Kola Bay, an assessment of the current environmental geological conditions of the fjords in the eastern part of the Barents Sea is given. Seismic-acoustic studies confirm the predominantly tectonic origin of the bay and the hazardous spread of gravitational rocks movement within the coastal slopes. The background geochemical characteristics of recent bottom sediments are quantified. It is shown that geochemical zoning of the bottom of the bay is a consequence of both natural and anthropogenic processes. According to the content of Cu, Zn, As, Cd, Pb, Hg and hexane-soluble petroleum products (PP) in the bottom sediments, the characteristics of various areas were obtained. It is shown that the distribution of PP and several other pollutants in the main components of aquatic and coastal geosystems is a leading element of the environmental monitoring system, quantitative assessment of anthropogenic impact and accumulated environmental damage. Active economic activity within the southern leg of the Kola Bay, as well as the naval bases, significantly affects the distribution of chemical elements. The data concerning distribution of chemical elements forms in bottom sediments are given that suggest a high probability of secondary pollution of the bottom water when the physicochemical conditions of sedimentation processes change. A comparative analysis showed that bottom sediments of the Kola Bay are characterized by the highest concentration of chemical elements in the North-West Region of the Russian Federation.


Ocean Science ◽  
2012 ◽  
Vol 8 (6) ◽  
pp. 971-982 ◽  
Author(s):  
V. N. Stepanov ◽  
H. Zuo ◽  
K. Haines

Abstract. An analysis of observational data in the Barents Sea along a meridian at 33°30' E between 70°30' and 72°30' N has reported a negative correlation between El Niño/La Niña Southern Oscillation (ENSO) events and water temperature in the top 200 m: the temperature drops about 0.5 °C during warm ENSO events while during cold ENSO events the top 200 m layer of the Barents Sea is warmer. Results from 1 and 1/4-degree global NEMO models show a similar response for the whole Barents Sea. During the strong warm ENSO event in 1997–1998 an anomalous anticyclonic atmospheric circulation over the Barents Sea enhances heat loses, as well as substantially influencing the Barents Sea inflow from the North Atlantic, via changes in ocean currents. Under normal conditions along the Scandinavian peninsula there is a warm current entering the Barents Sea from the North Atlantic, however after the 1997–1998 event this current is weakened. During 1997–1998 the model annual mean temperature in the Barents Sea is decreased by about 0.8 °C, also resulting in a higher sea ice volume. In contrast during the cold ENSO events in 1999–2000 and 2007–2008, the model shows a lower sea ice volume, and higher annual mean temperatures in the upper layer of the Barents Sea of about 0.7 °C. An analysis of model data shows that the strength of the Atlantic inflow in the Barents Sea is the main cause of heat content variability, and is forced by changing pressure and winds in the North Atlantic. However, surface heat-exchange with the atmosphere provides the means by which the Barents sea heat budget relaxes to normal in the subsequent year after the ENSO events.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1170
Author(s):  
Sergey Sakerin ◽  
Dmitry Kabanov ◽  
Valery Makarov ◽  
Viktor Pol’kin ◽  
Svetlana Popova ◽  
...  

The results from studies of aerosol in the Arctic atmosphere are presented: the aerosol optical depth (AOD), the concentrations of aerosol and black carbon, as well as the chemical composition of the aerosol. The average aerosol characteristics, measured during nine expeditions (2007–2018) in the Eurasian sector of the Arctic Ocean, had been 0.068 for AOD (0.5 µm); 2.95 cm−3 for particle number concentrations; 32.1 ng/m3 for black carbon mass concentrations. Approximately two–fold decrease of the average characteristics in the eastern direction (from the Barents Sea to Chukchi Sea) is revealed in aerosol spatial distribution. The average aerosol characteristics over the Barents Sea decrease in the northern direction: black carbon concentrations by a factor of 1.5; particle concentrations by a factor of 3.7. These features of the spatial distribution are caused mainly by changes in the content of fine aerosol, namely: by outflows of smokes from forest fires and anthropogenic aerosol. We considered separately the measurements of aerosol characteristics during two expeditions in 2019: in the north of the Barents Sea (April) and along the Northern Sea Route (July–September). In the second expedition the average aerosol characteristics turned out to be larger than multiyear values: AOD reached 0.36, particle concentration up to 8.6 cm−3, and black carbon concentration up to 179 ng/m3. The increased aerosol content was affected by frequent outflows of smoke from forest fires. The main (99%) contribution to the elemental composition of aerosol in the study regions was due to Ca, K, Fe, Zn, Br, Ni, Cu, Mn, and Sr. The spatial distribution of the chemical composition of aerosols was analogous to that of microphysical characteristics. The lowest concentrations of organic and elemental carbon (OC, EC) and of most elements are observed in April in the north of the Barents Sea, and the maximal concentrations in Far East seas and in the south of the Barents Sea. The average contents of carbon in aerosol over seas of the Asian sector of the Arctic Ocean are OC = 629 ng/m3, EC = 47 ng/m3.


1999 ◽  
Vol 52 (3) ◽  
pp. 273-285 ◽  
Author(s):  
Martin J. Siegert ◽  
Julian A. Dowdeswell ◽  
Martin Melles

A numerical ice-sheet model was used to reconstruct the Late Weichselian glaciation of the Eurasian High Arctic, between Franz Josef Land and Severnaya Zemlya. An ice sheet was developed over the entire Eurasian High Arctic so that ice flow from the central Barents and Kara seas toward the northern Russian Arctic could be accounted for. An inverse approach to modeling was utilized, where ice-sheet results were forced to be compatible with geological information indicating ice-free conditions over the Taymyr Peninsula during the Late Weichselian. The model indicates complete glaciation of the Barents and Kara seas and predicts a “maximum-sized” ice sheet for the Late Weichselian Russian High Arctic. In this scenario, full-glacial conditions are characterized by a 1500-m-thick ice mass over the Barents Sea, from which ice flowed to the north and west within several bathymetric troughs as large ice streams. In contrast to this reconstruction, a “minimum” model of glaciation involves restricted glaciation in the Kara Sea, where the ice thickness is only 300 m in the south and which is free of ice in the north across Severnaya Zemlya. Our maximum reconstruction is compatible with geological information that indicates complete glaciation of the Barents Sea. However, geological data from Severnaya Zemlya suggest our minimum model is more relevant further east. This, in turn, implies a strong paleoclimatic gradient to colder and drier conditions eastward across the Eurasian Arctic during the Late Weichselian.


Author(s):  
Bjarte O. Kvamme ◽  
Adekunle P. Orimolade ◽  
Sverre K. Haver ◽  
Ove T. Gudmestad

A study of the wave conditions in the North Sea, the Norwegian Sea and the Barents Sea is presented in this paper. For each region, one reference location for which there are buoy measurements is selected. For the selected locations, WAM10 hindcast data are obtained from the Norwegian Meteorological Institute (MET Norway). The hindcast data for each location cover the period from 1957 to 2014. First, the hindcast datasets were validated against available buoy measurements — both for extreme value predictions and for application of hindcast data for planning of marine operations. The validation was carried out considering the winter season and the summer season separately. For each season, the datasets for two consecutive months were used. A comparison of the time-series of the hindcast datasets against the buoy measurements showed that the hindcast datasets compared relatively well with the buoy measurements. However, a comparison of the statistical parameters of the hindcast datasets against the buoy measurements showed that the hindcast datasets are slightly conservative in the estimate of the significant wave height for the Barents Sea and the Norwegian Sea. Overall, the data compared well, and the hindcast datasets are therefore considered in the following analysis. Hindcast data from these 57 years show that the wave conditions in the selected Norwegian Sea location is harsher than the wave conditions in both the North Sea and the Barents Sea locations. This is in agreement with the general expected spatial trend in the wave climate on the Norwegian Continental Shelf (NCS). It was also observed that the wave conditions in the selected Barents Sea location are harsher than the wave conditions in the North Sea. These findings are also reflected in the NORSOK N-003 standard on “Actions and Action effects” (NORSOK, 2015). The weather windows for weather-sensitive marine operations, that is, operations with operational reference period not exceeding 72 hours, were established from the hindcast dataset for each of the locations. It was observed that the Norwegian Sea has shorter weather windows, especially in the winter seasons, compared to both the Barents Sea and the North Sea. It was expected that the operational windows would be shorter in the winter seasons in the Barents Sea, due to the occurrence of polar lows. However, the polar lows are few and cause more concern related to forecasting of the weather conditions to start actual marine operations. Generally, the month with the highest probability of weather windows exceeding 72 hours was found to be July for all three locations.


Sign in / Sign up

Export Citation Format

Share Document