Ecophenotypic plasticity in shell growth direction of asari clam Ruditapes philippinarum

Author(s):  
Takeshi Tomiyama

Abstract Asari clam (or Manila clam) Ruditapes philippinarum is an important bivalve for local fisheries. This species exhibits a large variation in shell morphology, and the shell roundness tends to be greater in more unsuitable habitats. To test whether the increments in shell size parameters (length, height and width) were affected solely by environmental conditions or by internal factors such as initial shell shapes or growth rate, a field caging experiment was conducted at two different sites of unsuitable and suitable habitats in Matsukawaura Lagoon, Japan, where shell shapes of wild clams were significantly different between the habitats. In the experiment, clams were released from the two sites to the same site or to the other site and were re-collected after 3, 6 and 12 months of caging. Caged clams originating from unsuitable habitats and released to suitable habitats showed a reduction in shell height relative to shell length, while clams from suitable habitats introduced to unsuitable habitats showed marked increases in both shell height and width. Generalized linear mixed models suggested that the increase in shell height was affected largely by the release habitat (environment) whereas the increase in shell width was affected largely by the individual growth rate. These results suggest that marginal growths in shell height and width respond differently to external and internal factors of clams, resulting in plasticity in their shell shapes according to the environments to which they are translocated.

2013 ◽  
Vol 10 (1) ◽  
pp. 1-12
Author(s):  
Baghdad Science Journal

The present work includes investigation of some features of shell morphology; shell size, shell thickness, shell colour of the land snail Monacha cantiana, in addition to the correlation between height and diameter of shell and between shell aperture diameter and shell diameter at four sites within Baghdad Province, Iraq. Also, measurements of three environmental variables were made; soil temperature, soil moisture and soil calcium content in adition to population density. Shell Aperture Index (Ia) and Shell Index (SI) for individuals from size class ranged between (9-12)mm were measured. The results showed that the deference in shell size by using (Ia) within population related to temperature, moisture and population density but, the value of Shell Index decreased in AL-Kadhimiya site (0.81-0.97) due to increase in population density. The species was characterized by shell colour variation (creamy white, white ,creamy). Also, The results showed strong and positive correlation between shell height and diameter and between shell aperture diameter and shell diameter for all size classes.


1992 ◽  
Vol 6 ◽  
pp. 251-251
Author(s):  
Peter D. Roopnarine

The objective of this project is to understand the long-term relationships, if any, if within-clade bivalve shell morphology to variations in shell growth rate and possible underlying environmental factors. As a preliminary approach to this problem, a study was undertaken to record the history of shell morphology, on the Florida peninsula, of the venerid bivalve Chione cancellata L. (Lower Pliocene - Recent). Samples were obtained from the following formations: Lower Pinecrest (3.5-3.0 mya), Caloosahatchee Fm. (2.5-1.8 mya), Upper Pinecrest Beds (2.4-1.8 mya), Bermont Fm. (1.6-1.1 mya), Anastasia Fm. (0.05 mya), and Recent. The total data set comprised ten samples.Eleven morphometric measurements were selected on their predicted sensitivity to growth rate-caused variations in valve convexity. Comparisons of sample data sets were performed using principal components and canonical variates analyses. Only left-handed valves were analyzed. The results of both the principal component and canonical variates analyses indicate that a disproportionately large amount of the variance in the composite data set is accounted for by one morphometric dimension. This dimension is essentially a summary of contrast between anterior hinge morphology and posterior adductor muscle morphology. The samples form three major clusters; (1) Bermont Fm., Anastasia Fm. and Recent samples, (2) Caloosahatchee Fm. and U. Pinecrest samples, and (3) L. Pinecrest samples. There is some overlap of extremes between clusters (2) and (3), but otherwise the clusters are distinct. The result is a gradual but significant change of morphology during a 3.5 m.y. time span.The next step in the project is to seek an explanation for the above observations. The provinciality of the phenomenon will be tested more extensively with the inclusion of Neogene and Recent samples from the Southern Caribbean and the Atlantic Coastal Plain. Also, considering the dynamism of Florida's oceanographic conditions (temperature, productivity and circulation) during the last 3.5 m.y., correlation of oceanographic conditions with C. cancellata's growth rate and morphology will be examined. The proposed method is a systematic sampling of stable oxygen and carbon isotopes from valves within the samples analyzed.


Author(s):  
Richard Owen ◽  
Christopher Richardson ◽  
Hilary Kennedy

The relationship between shell growth rate and striae deposition was investigated in a field study in which groups of juvenile scallops, Pecten maximus, (Pectinidae: Bivalvia) were deployed for monthly periods over a year in the Menai Strait (North Wales). The number of striae deposited per day, inter-striae width (the increment of shell deposited between successive striae) and striae abundance (the number of striae deposited per mm of shell height) all correlated well with measured shell growth rates. During the winter months, when seawater temperatures were minimal (6°C), inter-striae width declined, whilst striae abundance increased, whereas during the summer when seawater temperatures were maximal (18°C), shell growth was rapid with maximum inter-striae width, resulting in a seasonal pattern of narrowly grouped, then widely spaced striae. This seasonal pattern in inter-striae width variation provides an accurate and reliable method for estimating the number of growth cycles and hence the age of P. maximus.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
P. Heres ◽  
J. Troncoso ◽  
E. Paredes

AbstractCryopreservation is the only reliable method for long-term storage of biological material that guarantees genetic stability. This technique can be extremely useful for the conservation of endangered species and restock natural populations for declining species. Many factors have negatively affected the populations of high economical value shellfish in Spain and, as a result, many are declining or threatened nowadays. This study was focused on early-life stages of Venerupis corrugata, Ruditapes decussatus and Ruditapes philippinarum to develop successful protocols to enhance the conservation effort and sustainable shellfishery resources. Firstly, common cryoprotecting agents (CPAs) were tested to select the suitable permeable CPA attending to toxicity. Cryopreservation success using different combinations of CPA solutions, increasing equilibrium times and larval stages was evaluated attending to survival and shell growth at 2 days post-thawing. Older clam development stages were more tolerant to CPA toxicity, being ethylene-glycol (EG) and Propylene-glycol (PG) the least toxic CPAs. CPA solution containing EG yielded the highest post-thawing survival rate and the increase of equilibration time was not beneficial for clam larvae. Cryopreservation of trochophores yielded around 50% survivorship, whereas over 80% of cryopreserved D-larvae were able to recover after thawing.


1996 ◽  
Vol 11 (4) ◽  
pp. 795-803 ◽  
Author(s):  
A. Endo ◽  
H. S. Chauhan ◽  
T. Egi ◽  
Y. Shiohara

Macrosegregation of Y2Ba1Cu1O5 (Y211) particles was observed in Pt-added Y1Ba2Cu3O7−δ (Y123) crystals grown by an undercooling method. It was found that the macrosegregation of Y211 particles depended on the growth direction and the growth rate (R) as a function of undercooling (ΔT). The amount of Y211 particles in Y123 crystals grown at large R was larger than at small R. Also, the amount of Y211 in Y123 growing along the a-direction was larger than that along the c-direction. Further, it was noted that the smaller Y211 particles in size were distributed in Y123 grown at large R. These phenomena could be at least qualitatively explained by the prevalent trapping/pushing theory. In the direct observation of magnetic flux with the Faraday effect of iron garnet film, the flux pinning force was found to be in good agreement with the macrosegregation of Y211 particles.


Author(s):  
Patricia C. Almada-Villela

The shell growth of small coastal Mytilus edulis L. was measured at three different constant low salinities over short periods of time. Growth was significantly depressed in 6·4 and 16‰ S but not in 22·4‰ S. Fluctuating salinities between 0 and 32‰ S depressed growth whether the fluctuations were of sinusoidal or abrupt form. After 1 week of preconditioning to constant 32‰ S the growth of coastal (Bangor) mussels was better than estuarine (Conwy) mussels. However, after two weeks’ preconditioning to 32‰ S the estuarine mussels displayed the best growth. In the fluctuating regime, both coastal and estuarine mussels exhibited poor growth rates. The long-term response of the shell growth of coastal M. edulis was followed over a period of 44 days. Salinities in the range 1·8–9·6‰ S were lethal to the mussels within 10 days. In 12·8 and 16‰ S growth was initially delayed but recovered eventually. There was a gradual decline in the growth rate of the mussels exposed to the higher salinities (19·2–32‰) and an improvement in the growth of the mussels living in lower salinities (12·8 and 16‰) to levels nearly matching that of the high salinity animals by day 37. This suggests that acclimation of the shell growth of M. edulis to salinities in the 12·8–28·8‰ S range was achieved by the mussels during the experimental period.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sae Katsuro ◽  
Weifang Lu ◽  
Kazuma Ito ◽  
Nanami Nakayama ◽  
Naoki Sone ◽  
...  

Abstract Improving current injection into r- and m-planes of nanowires (NWs) is essential to realizing efficient GaInN/GaN multiple quantum shell (MQS) NW-based light-emitting diodes (LEDs). Here, we present the effects of different p-GaN shell growth conditions on the emission characteristics of MQS NW-LEDs. Firstly, a comparison between cathodoluminescence (CL) and electroluminescence (EL) spectra indicates that the emission in NW-LEDs originates from the top region of the NWs. By growing thick p-GaN shells, the variable emission peak at around 600 nm and degradation of the light output of the NW-LEDs are elaborated, which is attributable to the localization of current in the c-plane region with various In-rich clusters and deep-level defects. Utilizing a high growth rate of p-GaN shell, an increased r-plane and a reduced c-plane region promote the deposition of indium tin oxide layer over the entire NW. Therefore, the current is effectively injected into both the r- and m-planes of the NW structures. Consequently, the light output and EL peak intensity of the NW-LEDs are enhanced by factors of 4.3 and 13.8, respectively, under an injection current of 100 mA. Furthermore, scanning transmission electron microscope images demonstrate the suppression of dislocations, triangular defects, and stacking faults at the apex of the p-GaN shell with a high growth rate. Therefore, localization of current injection in nonradiative recombination centers near the c-plane was also inhibited. Our results emphasize the possibility of realizing high efficacy in NW-LEDs via optimal p-GaN shell growth conditions, which is quite promising for application in the long-wavelength region.


Sign in / Sign up

Export Citation Format

Share Document