scholarly journals Role of substrate utilization and thermogenesis on body-weight control with particular reference to alcohol

2000 ◽  
Vol 59 (4) ◽  
pp. 511-517 ◽  
Author(s):  
Yves Schutz

Alcohol (ethanol; EtOH) provides fuel energy to the body (29·7 kJ (7·1 kcal)/g, 23·4 kJ (5·6 kcal)/ml), as do other macronutrients, but no associated essential nutrients. The thermogenic effect of EtOH (on average 15 % of its metabolizable value) is much greater than that of the main substrates utilized by the body, i.e. fat and carbohydrates (CHO), suggesting a lower net efficiency of energy utilization for EtOH than for fat and CHO. EtOH cannot be stored in the body and is toxic, so that there is an obligatory continuous oxidation of EtOH and it becomes the priority fuel to be metabolized. In contrast to CHO, its rate of oxidation does not depend on the dose ingested. As with CHO intake, it engenders a shift in postprandial substrate utilization (decrease in fat oxidation), but by a non-insulin-mediated mechanism. A limited amount of EtOH can be converted to fatty acids by hepatic de novo lipogenesis (as occurs with high levels of CHO feeding) from acetate production, which inhibits lipolysis in peripheral tissues. There is no evidence that EtOH consumed under normoenergetic conditions (i.e. isoenergetically replacing CHO or fat) leads to greater body fat storage than fat or CHO. However, there is still a lack of experimental studies on the influence of EtOH on the level of spontaneous physical activity in man. This effect may well depend on the dose of EtOH consumed as well as other intrinsic factors.

2003 ◽  
Vol 284 (3) ◽  
pp. E583-E588 ◽  
Author(s):  
Akira Gomori ◽  
Akane Ishihara ◽  
Masahiko Ito ◽  
Satoshi Mashiko ◽  
Hiroko Matsushita ◽  
...  

Melanin-concentrating hormone (MCH) is a cyclic amino acid neuropeptide localized in the lateral hypothalamus. Although MCH is thought to be an important regulator of feeding behavior, the involvement of this peptide in body weight control has been unclear. To examine the role of MCH in the development of obesity, we assessed the effect of chronic intracerebroventricular infusion of MCH in C57BL/6J mice that were fed with regular or moderately high-fat (MHF) diets. Intracerebroventricular infusion of MCH (10 μg/day for 14 days) caused a slight but significant increase in body weight in mice maintained on the regular diet. In the MHF diet-fed mice, MCH more clearly increased the body weight accompanied by a sustained hyperphagia and significant increase in fat and liver weights. Plasma glucose, insulin, and leptin levels were also increased in the MCH-treated mice fed the MHF diet. These results suggest that chronic stimulation of the brain MCH system causes obesity in mice and imply that MCH may have a major role in energy homeostasis.


2012 ◽  
Vol 25 (2) ◽  
pp. 223-248 ◽  
Author(s):  
Andoni Lancha ◽  
Gema Frühbeck ◽  
Javier Gómez-Ambrosi

The alarming prevalence of obesity has led to a better understanding of the molecular mechanisms controlling energy homeostasis. Regulation of energy intake and expenditure is more complex than previously thought, being influenced by signals from many peripheral tissues. In this sense, a wide variety of peripheral signals derived from different organs contributes to the regulation of body weight and energy expenditure. Besides the well-known role of insulin and adipokines, such as leptin and adiponectin, in the regulation of energy homeostasis, signals from other tissues not previously thought to play a role in body weight regulation have emerged in recent years. The role of fibroblast growth factor 21 (FGF21), insulin-like growth factor 1 (IGF-I), and sex hormone-binding globulin (SHBG) produced by the liver in the regulation of body weight and insulin sensitivity has been recently described. Moreover, molecules expressed by skeletal muscle such as myostatin have also been involved in adipose tissue regulation. Better known is the involvement of ghrelin, cholecystokinin, glucagon-like peptide 1 (GLP-1) and PYY3–36, produced by the gut, in energy homeostasis. Even the kidney, through the production of renin, appears to regulate body weight, with mice lacking this hormone exhibiting resistance to diet-induced obesity. In addition, the skeleton has recently emerged as an endocrine organ, with effects on body weight control and glucose homeostasis through the actions of bone-derived factors such as osteocalcin and osteopontin. The comprehension of these signals will help in a better understanding of the aetiopathology of obesity, contributing to the potential development of new therapeutic targets aimed at tackling excess body fat accumulation.


2002 ◽  
Vol 61 (2) ◽  
pp. 319-319
Author(s):  
Yves Schutz

Role of substrate utilization and thermogenesis on body-weight control with particular reference to alcohol By Yves Schutz Volume 59 (2000), Number 4 Figure 1, page 513


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Pilar Mata Tutor ◽  
Catherine Villoria Rojas ◽  
María Benito Sánchez

Decomposition is a natural process that begins approximately four minutes after death and continues until the body is degraded to simpler biochemical components which are gradually recycled back to the environment. This process is dependent on extrinsic and intrinsic factors. Embalming is a chemical preservation technique that aims to preserve the external appearance of the body in good condition for an indeterminate period. In Spain, there is a lack of experimental studies carried out to analyse the variables that affect decomposition in embalmed bodies, therefore, in accordance with the conclusions reached by previous authors, it is hypothesised that embalmed bodies show quantifiable characteristics during the late stage decomposition which distinguish them from control, unembalmed, cadavers. An anthropological and statistical analysis was performed on 14 individuals from Cementerio Sur de Madrid exhumed after ten years according to the Mortuary Health Law of the Autonomous Region of Madrid. The preliminary results obtained showed that there is a qualitative and statistically significant relationship between the variables evaluated, being the presence or absence of soft tissue the most notable difference. The mortuary or thanatopraxy treatments performed before the burial and the microenvironmental conditions of the burial positively influence the soft tissue preservation on embalmed bodies. These results contribute to the understanding about the decomposition rate of an embalmed cadavers in cemeteries, and the related extrinsic variables.


2021 ◽  
pp. 113-118

Nesfatin-1is first described in 2006 as an anorectic peptide and regulate food intake. In following years, the studies demonstrated the presence of nesfatin-1 in central and various peripheral tissues. Thus, nesfatin-1 popularity increasing widely in clinical medicine, especially in cardiology, neurology, reproduction, metabolic disorders, psychiatric disorders, gastrointestinal system. Today, the main point concerning nesfatin-1 action in body organ and systems is concentrate its biological signals effects. Thus the increasing knowledge in these area will be highlighted for future studies especially in serious health problem all over the world population.


2020 ◽  
Vol 11 (5) ◽  
pp. 121-127
Author(s):  
Ajay Kushwaha ◽  
Nisha Kumari Ojha

Children are more susceptible to various infections because of underdeveloped immune system as compared to adults. Strengthening the immune system is a natural way to help the body fight against the disease-causing pathogens and immunomodulators can play a major role in this context. Various Ayurveda classics and studies published in journals related to Ayurveda drugs for improving immunity are reviewed and analysed. In Ayurveda, the objective of immune enhancement is achieved through the use of the Amalakyadi Rasayana (an Immunomodulators), as it increases longevity of life, memory, intellect, luxture, complexion, voice, strength of the body functions, strength of all senses and provides the resistance to disease, improves glow and power. Analysis of classical references and various experimental studies show that Amalakyadi Rasayana posse immuno-modulatory, Antioxidant, Anti-inflammatory, Antimicrobial, Anthelmintic activity. Present paper is a review to update knowledge on pharmacological properties, therapeutic actions and possible mode of action of the selected formulation, Amalakyadi rasayana from Yogaratnakara (Rasayanadhikara/17) to enhance the immunity in children. Rasayana is an important part of Ayurvedic therapeutics used to improve the quality of life by strengthening the tissue quality and by reducing the age-related tissue degeneration. This study reveals that Amalakyadi Rasayana have potential to improve or strengthen the immune system in children and thereby can lower down the morbidity rate in children.


2022 ◽  
Author(s):  
Eduardo A Maury ◽  
Maxwell A Sherman ◽  
Giulio Genovese ◽  
Thomas G. Gilgenast ◽  
Prashanth Rajarajan ◽  
...  

While inherited and de novo copy number variants (CNV) have been implicated in the genetic architecture of schizophrenia (SCZ), the contribution of somatic CNVs (sCNVs), present in some but not all cells of the body, remains unknown. Here we explore the role of sCNVs in SCZ by analyzing blood-derived genotype arrays from 12,834 SCZ cases and 11,648 controls. sCNVs were more common in cases (0.91%) than in controls (0.51%, p = 2.68e-4). We observed recurrent somatic deletions of exons 1-5 of the NRXN1 gene in 5 SCZ cases. Allele-specific Hi-C maps revealed ectopic, allele-specific loops forming between a potential novel cryptic promoter and non-coding cis regulatory elements upon deletions in the 5' region of NRXN1. We also observed recurrent intragenic deletions of ABCB11, a gene associated with anti-psychotic response, in 5 treatment-resistant SCZ cases. Taken together our results indicate an important role of sCNVs to SCZ risk and treatment-responsiveness.


2021 ◽  
Author(s):  
Zhou-Tong Dai ◽  
Yuan Xiang ◽  
Xing-Hua Liao

Abstract Background Uterine Corpus Endometrial Cancer (UCEC) is one of the three common malignant tumors of the female reproductive tract. According to reports, the cure rate of early UCEC can reach 95%. Therefore, the development of prognostic markers will help UCEC patients to find the disease earlier and develop treatment earlier. The ALDH family was first discovered to be the essential gene of the ethanol metabolism pathway in the body. Recent studies have shown that ALDH can participate in the regulation of cancer. Methods We used the gene profile data of 33 cancers in the TCGA database to analyze the expression and survival of the ALDH family. GO, KEGG, PPI multiple functional analysis was used to predict the regulatory role of ALDH family in cancer. In addition, using CCK-8, colony formation, nude mouse tumor formation and other methods, the in vitro function of UCEC cancer cell lines was tested to further confirm the key role of ALDH2 expression in the proliferation of UCEC cell lines. Finally, Lasso and Cox regression methods were used to establish an overall survival prognosis model based on ALDH2 expression. Result In our research, we explored the expression of ALDH family in 33 cancers. It was found that ALDH2 was abnormally expressed in UCEC. Besides, in vivo and in vitro experiments were conducted to explore the effect of ALDH2 expression on the proliferation of UCEC cell lines. Meanwhile, the change of its expression is not due to gene mutations, but is regulated by miR-135-3p. At the same time, the impact of ALDH2 changes on the survival of UCEC patients is deeply discussed. Finally, a nomogram for predicting survival was constructed, with a C-index of 0.798 and AUC of 0.764. Conclusion This study suggests that ALDH2 may play a crucial role in UCEC progression and has the potential as a prognostic biomarker of UCEC.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1943 ◽  
Author(s):  
Hernández ◽  
Canfora ◽  
Jocken ◽  
Blaak

The interplay of gut microbiota, host metabolism, and metabolic health has gained increased attention. Gut microbiota may play a regulatory role in gastrointestinal health, substrate metabolism, and peripheral tissues including adipose tissue, skeletal muscle, liver, and pancreas via its metabolites short-chain fatty acids (SCFA). Animal and human data demonstrated that, in particular, acetate beneficially affects host energy and substrate metabolism via secretion of the gut hormones like glucagon-like peptide-1 and peptide YY, which, thereby, affects appetite, via a reduction in whole-body lipolysis, systemic pro-inflammatory cytokine levels, and via an increase in energy expenditure and fat oxidation. Thus, potential therapies to increase gut microbial fermentation and acetate production have been under vigorous scientific scrutiny. In this review, the relevance of the colonically and systemically most abundant SCFA acetate and its effects on the previously mentioned tissues will be discussed in relation to body weight control and glucose homeostasis. We discuss in detail the differential effects of oral acetate administration (vinegar intake), colonic acetate infusions, acetogenic fiber, and acetogenic probiotic administrations as approaches to combat obesity and comorbidities. Notably, human data are scarce, which highlights the necessity for further human research to investigate acetate’s role in host physiology, metabolic, and cardiovascular health.


Sign in / Sign up

Export Citation Format

Share Document