scholarly journals Integrated Bioinformatics Data Analysis and Experimental Studies Reveals Prognostic Significance of ALDH Family in Endometria Cancer

Author(s):  
Zhou-Tong Dai ◽  
Yuan Xiang ◽  
Xing-Hua Liao

Abstract Background Uterine Corpus Endometrial Cancer (UCEC) is one of the three common malignant tumors of the female reproductive tract. According to reports, the cure rate of early UCEC can reach 95%. Therefore, the development of prognostic markers will help UCEC patients to find the disease earlier and develop treatment earlier. The ALDH family was first discovered to be the essential gene of the ethanol metabolism pathway in the body. Recent studies have shown that ALDH can participate in the regulation of cancer. Methods We used the gene profile data of 33 cancers in the TCGA database to analyze the expression and survival of the ALDH family. GO, KEGG, PPI multiple functional analysis was used to predict the regulatory role of ALDH family in cancer. In addition, using CCK-8, colony formation, nude mouse tumor formation and other methods, the in vitro function of UCEC cancer cell lines was tested to further confirm the key role of ALDH2 expression in the proliferation of UCEC cell lines. Finally, Lasso and Cox regression methods were used to establish an overall survival prognosis model based on ALDH2 expression. Result In our research, we explored the expression of ALDH family in 33 cancers. It was found that ALDH2 was abnormally expressed in UCEC. Besides, in vivo and in vitro experiments were conducted to explore the effect of ALDH2 expression on the proliferation of UCEC cell lines. Meanwhile, the change of its expression is not due to gene mutations, but is regulated by miR-135-3p. At the same time, the impact of ALDH2 changes on the survival of UCEC patients is deeply discussed. Finally, a nomogram for predicting survival was constructed, with a C-index of 0.798 and AUC of 0.764. Conclusion This study suggests that ALDH2 may play a crucial role in UCEC progression and has the potential as a prognostic biomarker of UCEC.

1957 ◽  
Vol 106 (1) ◽  
pp. 111-126 ◽  
Author(s):  
Howard Green ◽  
Allan L. Lorincz

Cells of the Krebs ascites tumor of mice grow well in the body of the chick embryo until about the 17th day of incubation, when degeneration of the tumor can be seen in tissue sections and viable tumor cells begin to disappear from the internal organs of the embryo. This death of tumor cells follows the appearance in the chick embryo of serum gamma globulins. Among these are antibodies which can agglutinate the tumor cells in vitro, and destroy their viability. These antibodies occur in the blood without the introduction of any foreign antigen. Their possible origin is discussed. Small numbers of mouse tumor cells growing in the chick embryo are completely eliminated shortly after the time when antibodies ordinarily become detectable. When the number of cells present is larger, viable cells persist longer, and at still higher cell numbers, the embryo or chick is unable to eliminate the tumor, and is itself killed by it. Gamma globulins of older birds injected into young chick embryos bearing growing tumor clear the embryonic organs of viable tumor cells.


2015 ◽  
Vol 08 (01) ◽  
pp. 006-011
Author(s):  
Carolina B. Berchieri-Ronchi ◽  
Paula T. Presti ◽  
Ana Lucia A. Ferreira ◽  
Camila R. Correa ◽  
Daisy Maria F. Salvadori ◽  
...  

ABSTRACTGiven its high ability to damage important cellular components (lipids, proteins and deoxyribonucleic acid), oxidative stress is now recognized as one of the most common mechanisms associated with development of a variety of diseases and natural events such as pregnancy. During reproduction period, there is a change in the pro-oxidant and antioxidant balance due to the body and circulation modifications that are inherent to the pregnancy process. The present paper discusses the role of oxidative stress on the reproduction process. More effective defense strategies are needed to decrease the deleterious effects of oxidative-stress-induced gestation. This approach could be achieved by antioxidant status alteration. Further clinical and experimental studies are needed for better understanding of oxidative stress mechanism and the impact of antioxidant supplementation on reproduction.


2019 ◽  
Vol 7 (9) ◽  
pp. 279 ◽  
Author(s):  
Adrian Catinean ◽  
Maria Adriana Neag ◽  
Andrei Otto Mitre ◽  
Corina Ioana Bocsan ◽  
Anca Dana Buzoianu

In recent years, increased attention has been paid to the relationship between microbiota and various diseases, especially immune-mediated diseases. Because conventional therapy for many autoimmune diseases is limited both in efficacy and safety, there is an increased interest in identifying nutraceuticals, particularly probiotics, able to modulate the microbiota and ameliorate these diseases. In this review, we analyzed the research focused on the role of gut microbiota and skin in immunity, their role in immune-mediated skin diseases (IMSDs), and the beneficial effect of probiotics in patients with this pathology. We selected articles published between 2009 and 2019 in PubMed and ScienceDirect that provided information regarding microbiota, IMSDs and the role of probiotics in these diseases. We included results from different types of studies including observational and interventional clinical trials or in vivo and in vitro experimental studies. Our results showed that probiotics have a beneficial effect in changing the microbiota of patients with IMSDs; they also influence disease progression. Further studies are needed to better understand the impact of new therapies on intestinal microbiota. It is also important to determine whether the microbiota of patients with autoimmune diseases can be manipulated in order to restore homeostasis of the microbiota.


2020 ◽  
Vol 21 (8) ◽  
pp. 654-658 ◽  
Author(s):  
Wujun Chen ◽  
Shuai Wang ◽  
Yudong Wu ◽  
Xin Shen ◽  
Shutan Xu ◽  
...  

The term “vitamin P” is an old but interesting concept. Most substances in this category belong to the family of flavonoids. “Vitamin P” has also been used to define the activity of some flavonoids, including quercetin, myricetin, and rutin. According to experimental studies, the “quercetin-like natural plant flavonoids” are beneficial to the body due to their various physiological and pharmacological activities in large doses (5 μM in vitro, 50 mg/kg in mice and 100 mg/kg in rats). The physiologically achievable concentration is 10 to 100 nM, which is quite high and hard to achieve from a normal diet. Thus, the physiologic activity and mechanism of "vitamin P" are still not clear. It should be noted that the quercetin-like natural plant flavonoids are physiological co-factors of cyclooxygenases (COXs), which are the rate-limiting key enzymes of prostaglandins. These quercetin-like natural plant flavonoids can strongly stimulate prostaglandin levels at lower doses (10 nM in vitro and in 0.1 mg/kg in vivo in rats). Although these "vitamin P" substances are not original substances in the body, their physiological functions affect the body. This review is focused on the most compelling evidence regarding the physiologic role and mechanism of quercetin-like natural plant flavonoids, which may be useful in understanding the physiological functions of "vitamin P", with the goal of focusing on the role of flavonoids in human physiological health.


2019 ◽  
Vol 32 (Supplement_2) ◽  
Author(s):  
Liu Zhun ◽  
Shen Zhimin ◽  
Zhang Peipei ◽  
Yu Shaobin ◽  
Gao Lei ◽  
...  

Abstract Background Keratin17(KRT17), as a multifunction cytoskeletal protein, associated with a multitudinous of biological processes, including cell proliferation, migration, and invasion. Previously, we have found up-expression of KRT17 genes in ESCC tissues. Currently, published kinds of researches claimed KRT17 is engaged in the tumorigenesis and progression of multiple cancers. However, the prognostic significance of KRT17 in ESCC patients and its effects in ESCC progression remains indistinct. Methods We verified the expression level of KRT17 in ESCC tissues by Western blotting and q-PCR and constructed KRT17 upregulated and knockdown EC9706 and Eca109 cells by Lentivirus overexpression and CAS9. The function of KRT17 in ESCC proliferation and metastasis were studied in vitro. We performed CCK-8 assays and plate colony formation assays and the plate colony formation assays to explore the effect of KRT17 on the proliferation, Moreover, the trans-well migration chamber experiment and wound healing test was taken to reveal the impact of KRT17 on migration capabilities. Results We verified that KRT17 is overexpressed in ESCC tissues and the role of KRT17 in the malignant behavior of ESCC in vitro and vivo . In CCK-8 assays and plate colony formation assays. We conformed proliferation capacity was notably enhanced by overexpression of KRT17 but compromised when KRT17 was knocked out. On the other hand, we used the plate colony formation assays to explore the effect of KRT17 on the proliferation of ESCC cells. KRT17 up-regulated significantly strengthened the proliferation while the KRT17 knockdown was weakened. To reveal the impact of KRT17 on migration, the trans-well migration chamber experiment was used to compare the role of down-regulation and up-regulation of KRT17 in migration; the results demonstrated that reducing expression of KRT17 significantly blocked the movement of ESCC cells as compared with the empty vector control. Otherwise, it has been confirmed that the cell migration ability employs a wound healing/scratch test because wound closure is generally a measure of cell motility. The results showed KRT17 overexpression notably reinforced the mobility of ESCC cells compared with the empty groups, whereas KRT17 knockdown cells prolonged the time to close the injury compared to blank groups. Collectively, these discoveries support that the increased expression of KRT17 in ESCC cells promoted a more proliferation and migratory phenotype in vitro. Conclusion The breakthrough indicated that the up-regulation of KRT17 in ESCC is closely related to malignant progression. Our data confirmed that KRT17 plays an essential role in reinforcing proliferation and metastasis in ESCC. Thence, KRT17 may serve as a significant molecular target for the diagnosis and therapy of ESCC.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Author(s):  
Abigail A. Fagan ◽  
Kristen M. Benedini

This chapter reviews the degree to which empirical evidence demonstrates that families influence youth delinquency. Because they are most likely to be emphasized in life-course theories, this chapter focuses on parenting practices such as parental warmth and involvement, supervision and discipline of children, and child maltreatment. It also summarizes literature examining the role of children's exposure to parental violence, family criminality, and young (teenage) parents in affecting delinquency. Because life-course theories are ideally tested using longitudinal data, which allow examination of, in this case, the impact of parenting practices on children's subsequent behaviors, this chapter focuses on evidence generated from prospective studies conducted in the United States and other countries. It also discusses findings from experimental studies designed to reduce youth substance use and delinquency by improving the family environment.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2999
Author(s):  
Deborah Reynaud ◽  
Roland Abi Nahed ◽  
Nicolas Lemaitre ◽  
Pierre-Adrien Bolze ◽  
Wael Traboulsi ◽  
...  

The inflammatory gene NLRP7 is the major gene responsible for recurrent complete hydatidiform moles (CHM), an abnormal pregnancy that can develop into gestational choriocarcinoma (CC). However, the role of NLRP7 in the development and immune tolerance of CC has not been investigated. Three approaches were employed to define the role of NLRP7 in CC development: (i) a clinical study that analyzed human placenta and sera collected from women with normal pregnancies, CHM or CC; (ii) an in vitro study that investigated the impact of NLRP7 knockdown on tumor growth and organization; and (iii) an in vivo study that used two CC mouse models, including an orthotopic model. NLRP7 and circulating inflammatory cytokines were upregulated in tumor cells and in CHM and CC. In tumor cells, NLRP7 functions in an inflammasome-independent manner and promoted their proliferation and 3D organization. Gravid mice placentas injected with CC cells invalidated for NLRP7, exhibited higher maternal immune response, developed smaller tumors, and displayed less metastases. Our data characterized the critical role of NLRP7 in CC and provided evidence of its contribution to the development of an immunosuppressive maternal microenvironment that not only downregulates the maternal immune response but also fosters the growth and progression of CC.


Author(s):  
Xuehui Wang ◽  
Changle Ji ◽  
Jiashu Hu ◽  
Xiaochong Deng ◽  
Wenfang Zheng ◽  
...  

Abstract Background Circular RNAs (circRNAs), a novel class of endogenous RNAs, have shown to participate in the development of breast cancer (BC). Hsa_circ_0005273 is a circRNA generated from several exons of PTK2. However, the potential functional role of hsa_circ_0005273 in BC remains largely unknown. Here we aim to evaluate the role of hsa_circ_0005273 in BC. Methods The expression level of hsa_circ_0005273 and miR-200a-3p were examined by RT-qPCR in BC tissues and cell lines. The effect of knocking down hsa_circ_0005273 in BC cell lines were evaluated by examinations of cell proliferation, migration and cell cycle. In addition, xenografts experiment in nude mice were performed to evaluate the effect of hsa_circ_0005273 in BC. RNA immunoprecipitation assay, RNA probe pull-down assay, luciferase reporter assay and fluorescence in situ hybridization were conducted to confirm the relationship between hsa_circ_0005273, miR-200a-3p and YAP1. Results Hsa_circ_0005273 is over-expressed in BC tissues and cell lines, whereas miR-200a-3p expression is repressed. Depletion of hsa_circ_0005273 inhibited the progression of BC cells in vitro and in vivo, while overexpression of hsa_circ_0005273 exhibited the opposite effect. Importantly, hsa_circ_0005273 upregulated YAP1 expression and inactivated Hippo pathway via sponging miR-200a-3p to promote BC progression. Conclusions Hsa_circ_0005273 regulates the miR-200a-3p/YAP1 axis and inactivates Hippo signaling pathway to promote BC progression, which may become a potential biomarker and therapeutic target.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A737-A737
Author(s):  
Loise Francisco-Anderson ◽  
Loise Francisco-Anderson ◽  
Mary Abdou ◽  
Michael Goldberg ◽  
Erin Troy ◽  
...  

BackgroundThe small intestinal axis (SINTAX) is a network of anatomic and functional connections between the small intestine and the rest of the body. It acts as an immunosurveillance system, integrating signals from the environment that affect physiological processes throughout the body. The impact of events in the gut in the control of tumor immunity is beginning to be appreciated. We have previously shown that an orally delivered single strain of commensal bacteria induces anti-tumor immunity preclinically via pattern recognition receptor-mediated activation of innate and adaptive immunity. Some bacteria produce extracellular vesicles (EVs) that share molecular content with the parent bacterium in a particle that is roughly 1/1000th the volume in a non-replicating form. We report here an orally-delivered and gut-restricted bacterial EV which potently attenuates tumor growth to a greater extent than whole bacteria or checkpoint inhibition.MethodsEDP1908 is a preparation of extracellular vesicles produced by a gram-stain negative strain of bacterium of the Oscillospiraceae family isolated from a human donor. EDP1908 was selected for its immunostimulatory profile in a screen of EVs from a range of distinct microbial strains. Its mechanism of action was determined by ex vivo analysis of the tumor microenvironment (TME) and by in vitro functional studies with murine and human cells.ResultsOral treatment of tumor-bearing mice with EDP1908 shows superior control of tumor growth compared to checkpoint inhibition (anti-PD-1) or an intact microbe. EDP1908 significantly increased the percentage of IFNγ and TNF producing CD8+ CTLs, NK cells, NKT cells and CD4+ cells in the tumor microenvironment (TME). EDP1908 also increased tumor-infiltrating dendritic cells (DC1 and DC2). Analysis of cytokines in the TME showed significant increases in IP-10 and IFNg production in mice treated with EDP1908, creating an environment conducive to the recruitment and activation of anti-tumor lymphocytes.ConclusionsThis is the first report of striking anti-tumor effects of an orally delivered microbial extracellular vesicle. These data point to oral EVs as a new class of immunotherapeutic drugs. They are particularly effective at harnessing the biology of the small intestinal axis, acting locally on host cells in the gut to control distal immune responses within the TME. EDP1908 is in preclinical development for the treatment of cancer.Ethics ApprovalPreclinical murine studies were conducted under the approval of the Avastus Preclinical Services’ Ethics Board. Human in vitro samples were attained by approval of the IntegReview Ethics Board; informed consent was obtained from all subjects.


Sign in / Sign up

Export Citation Format

Share Document