scholarly journals Does eating a reheated starchy carbohydrate meal improve postprandial glycaemia?

2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Tracey Robertson ◽  
Jonathan Brown ◽  
Barbara Fielding ◽  
Nicola Jackson ◽  
Roman Hovorka ◽  
...  

AbstractIncreased postprandial glycaemia and reduced insulin sensitivity are associated with development of Type 2 Diabetes (T2D). Maintaining a normal glucose response is important both for healthy individuals, for disease prevention, and for those with T2D, to prevent development of diabetes-related complications. Chilling previously-cooked starchy carbohydrate (CHO) results in retrogradation of some of the starch to form resistant starch (RS). RS is not absorbed in the small intestine and consequently does not contribute to the postprandial glucose excursion. Reheating the CHO, however, reverses this process, reducing some of the RS content. RS type 5 is formed in the laboratory by heating starch with free fatty acids; there is limited evidence for its formation using domestic cooking methods and real foods. Furthermore it is unclear whether this would translate into a noticeable effect on postprandial glucose metabolism.In this randomised crossover study, 8 participants attended two study days; at one they consumed a freshly cooked mashed potato meal (203 g boiled potato, 25 g butter) at the other they consumed an identical meal which had been chilled for 66 h then microwave reheated. The potatoes were intrinsically labelled with [U-13C]starch, and participants received a variable [6,6-2H2]glucose infusion, allowing detailed glucose flux modelling. Venous blood samples were taken for 6 h postprandially.There was no significant effect on postprandial glucose, however repeated measures ANOVA on postprandial insulin time-point data found a significant difference between meals (p = 0.026), with a 24% reduction in incremental area under the curve (0–120 min) and 21% reduction in insulin peak between freshly cooked and reheated meals. There were no significant effects on rate of appearance of glucose into the plasma from the gut (Ra) or on endogenous (hepatic) glucose production (EGP), however there was a strong trend for a reduced rate of glucose disposal (uptake into tissues, Rd) following the reheated meal (p = 0.054).It is hypothesised that RS was formed in the reheated meal by the chilling and reheating process; this will be verified by in vitro work later in the project. The attenuation of the postprandial insulin response with no significant effect on EGP suggests enhanced hepatic insulin sensitivity following the reheated meal as a possible mechanism for the effects of RS on postprandial glycaemia. This study demonstrates that making simple changes to the way a starchy carbohydrate meal is prepared can have significant beneficial effects on postprandial glucose metabolism.

2018 ◽  
Vol 7 ◽  
Author(s):  
Hanna Fjeldheim Dale ◽  
Caroline Jensen ◽  
Trygve Hausken ◽  
Einar Lied ◽  
Jan Gunnar Hatlebakk ◽  
...  

AbstractThe increased prevalence of lifestyle diseases, such as the metabolic syndrome and type 2 diabetes mellitus (T2DM), calls for more knowledge on dietary treatments targeting the specific metabolic pathways involved in these conditions. Several studies have shown a protein preload before a meal to be effective in lowering the postprandial glycaemic response in healthy individuals and patients with T2DM. The aim of the present study was to assess the effect of a marine protein hydrolysate (MPH) from Atlantic cod (Gadus morhua) on postprandial glucose metabolism in healthy, middle-aged to elderly subjects. This double-blind cross-over trial (n 41) included two study days with 4–7 d wash-out in between. The intervention consisted of 20 mg of MPH (or casein as control) per kg body weight given before a breakfast meal. The primary outcome was postprandial response in glucose metabolism, measured by samples of serum glucose, insulin and plasma glucagon-like peptide 1 (GLP-1) in 20 min intervals for 180 min. In a mixed-model regression analysis, no differences were observed between MPH and control for postprandial glucose concentration (mean difference: −0·04 (95 % CI –0·17, 0·09) mmol/l; P = 0·573) or GLP-1 concentration (mean difference between geometric means: 1·02 (95 % CI 0·99, 1·06) pmol/l; P = 0·250). The postprandial insulin concentration was significantly lower after MPH compared with control (mean difference between geometric means: 1·067 (95 % CI 1·01, 1·13) mIU/l; P = 0·032). Our findings demonstrate that a single dose of MPH before a breakfast meal reduces postprandial insulin secretion, without affecting blood glucose response or GLP-1 levels, in healthy individuals. Further studies with repeated dosing and in target groups with abnormal glucose control are warranted.


2015 ◽  
Vol 114 (8) ◽  
pp. 1218-1225 ◽  
Author(s):  
Tracey M. Robertson ◽  
Michael N. Clifford ◽  
Simon Penson ◽  
Gemma Chope ◽  
M. Denise Robertson

AbstractPrevious studies regarding the acute effects of coffee on glycaemic control have used a single large dose of coffee, typically containing the caffeine equivalent of 2–4 servings of coffee. This study investigates whether the acute effects of coffee are dose-dependent, starting with a single serving. A total of ten healthy overweight males participated in a two-part randomised double-blind cross-over study. In the first part, they ingested 2, 4 or 8 g instant decaffeinated coffee (DC) dissolved in 400 ml water with caffeine added in proportion to the DC (total 100, 200 or 400 mg caffeine) or control (400 ml water) all with 50 g glucose. In the second part, they ingested the same amounts of DC (2, 4, 8 g) or control, but with a standard 100 mg caffeine added to each. Capillary blood samples were taken every 15 min for 2 h after each drink and glucose and insulin levels were measured. Repeated measures ANOVA on glucose results found an effect when caffeine was varied in line with DC (P=0·008). Post hoc analysis revealed that both 2 and 4 g DC with varied caffeine content increased the glycaemic response v. control. There was no effect of escalating doses of DC when caffeine remained constant at 100 mg. These results demonstrate that one standard serving of coffee (2 g) is sufficient to affect glucose metabolism. Furthermore, the amount of caffeine found in one serving (100 mg) is sufficient to mask any potential beneficial effects of increasing other components. No dose-dependent effect was found.


2021 ◽  
pp. 193229682110269
Author(s):  
Manuel M. Eichenlaub ◽  
Natasha A. Khovanova ◽  
Mary C. Gannon ◽  
Frank Q. Nuttall ◽  
John G. Hattersley

Background: Current mathematical models of postprandial glucose metabolism in people with normal and impaired glucose tolerance rely on insulin measurements and are therefore not applicable in clinical practice. This research aims to develop a model that only requires glucose data for parameter estimation while also providing useful information on insulin sensitivity, insulin dynamics and the meal-related glucose appearance (GA). Methods: The proposed glucose-only model (GOM) is based on the oral minimal model (OMM) of glucose dynamics and substitutes the insulin dynamics with a novel function dependant on glucose levels and GA. A Bayesian method and glucose data from 22 subjects with normal glucose tolerance are utilised for parameter estimation. To validate the results of the GOM, a comparison to the results of the OMM, obtained by using glucose and insulin data from the same subjects is carried out. Results: The proposed GOM describes the glucose dynamics with comparable precision to the OMM with an RMSE of 5.1 ± 2.3 mg/dL and 5.3 ± 2.4 mg/dL, respectively and contains a parameter that is significantly correlated to the insulin sensitivity estimated by the OMM ( r = 0.7) Furthermore, the dynamic properties of the time profiles of GA and insulin dynamics inferred by the GOM show high similarity to the corresponding results of the OMM. Conclusions: The proposed GOM can be used to extract useful physiological information on glucose metabolism in subjects with normal glucose tolerance. The model can be further developed for clinical applications to patients with impaired glucose tolerance under the use of continuous glucose monitoring data.


2020 ◽  
Vol 17 (1) ◽  
pp. 91-100 ◽  
Author(s):  
Corvera A.C. Esmeralda ◽  
Pedroza E. David ◽  
Irais C. Maldonado ◽  
Sharara Núñez A. Ibrahim ◽  
Alcántar S. David ◽  
...  

Background: Type 2 diabetes (T2DM) has been associated with deficiencies in serum magnesium level, decreasing insulin sensitivity and glucose metabolism. Glycosylated hemoglobin (Hb1Ac) is a biomarker of glucose values within the half-life of the erythrocyte, that is, 3 months. Low circulating and intracellular magnesium levels can modify glucose metabolism and insulin sensitivity. Renal solute management is a parameter little used to estimate circulating and excreted concentrations of elements such as magnesium. Objective: The purpose of this study was to assess and associated fractional excretion of magnesium (FEMg) and serum magnesium with metabolic parameters, especially Hb1Ac percent, in a group of well characterized subjects with T2DM and non-diabetics subjects (ND). Methods: According to Hb1Ac, two groups were compared and associated with existing biochemical parameters, included Hb1Ac, fasting glucose, lipid profile, serum creatinine, serum magnesium and urinary creatinine for FEMg. Results: HbA1c levels were explained by serum magnesium in 25%. Serum magnesium levels in the ND group were higher than in the T2DM group and this was a statistically significant difference. Serum magnesium ≤1.8 is a risk factor (OD 16.1; P=0.021) for an HbA1c ≥ 6.5%. Conclusion: In this study, hypomagnesemia was a parameter strongly associated with the diagnosis and progression of T2DM, while FEMg showed no significant association.


Author(s):  
Matthias H. Morgalla ◽  
Hannah Fritschle ◽  
Andreas Vosseler ◽  
Charlotte Benkendorff ◽  
Apostolia Lamprinou ◽  
...  

Abstract Background and Objective This prospective, sham-controlled, randomized, cross-over study (NCT03637075), was designed to test the hypothesis that spinal cord stimulation (SCS) for the treatment of pain can also improve glucose metabolism and insulin sensitivity when compared to sham stimulation. Methods Ten non-diabetic participants (5 females, mean age 48.8 years) who had an SCS system implanted for the treatment of chronic neuropathic pain were studied. Whilst applying a hyperinsulinemic-euglycemic clamp, sham-stimulation and tonic stimulation were performed for 45 min (n=4) or 60 min (n=6) in each case randomly. The insulin sensitivity index and pain levels were determined. A second investigation, BurstDR stimulation was also conducted and the result was compared to that of sham stimulation (cross-over design). Results The insulin sensitivity improved significantly under the tonic stimulation when compared to the sham stimulation (p=0.037). BurstDR stimulation independently did not lead to a significantly improved insulin sensitivity compared to that after sham stimulation (p=0.16). We also examined the pain during the test and found no significant difference between sham and tonic stimulation (p=0.687). Conclusion The results of this study show that tonic stimulation used for the treatment of pain could also improve glucose metabolism and insulin sensitivity. Further investigations are required to investigate the clinical relevance of the role of glucose metabolism in diabetic chronic pain participants and its underlying mechanisms.


2019 ◽  
Vol 149 (1) ◽  
pp. 88-97 ◽  
Author(s):  
Aoife M Curran ◽  
Katy Horner ◽  
Victoria O'Sullivan ◽  
Alice B Nongonierma ◽  
Solène Le Maux ◽  
...  

ABSTRACT Background Dietary modifications can contribute to improved pancreatic β cell function and enhance glycemic control. Objectives The objectives of this study were as follows: 1) to investigate the potential of milk protein hydrolysates to modulate postprandial glucose response; 2) to assess individual responses; and 3) to explore the inter- and intraindividual reproducibility of the response. Methods A 14-d randomized crossover study investigated interstitial glucose levels of participants in response to 12% w/v milk protein drinks (intact caseinate and casein hydrolysate A and B) consumed in random order with a 2-d washout between treatments. Milk protein drinks were consumed immediately prior to study breakfast and evening meals. Twenty participants (11 men, 9 women) aged 50 ± 8 y with a body mass index (in kg/m2) of 30.2 ± 3.1 were recruited. Primary outcome was glucose levels assessed at 15-min intervals with the use of glucose monitors. Results Repeated-measures ANOVA revealed that for breakfast there was a significant difference across the 3 treatment groups (P = 0.037). The ability to reduce postprandial glucose was specific to casein hydrolysate B in comparison with intact caseinate (P = 0.039). However, despite this significant difference, further examination revealed that only 3 out of 18 individuals were classified as responders (P < 0.05). High intraclass correlation coefficients were obtained for glucose response to study meals (intraclass correlation coefficient: 0.892 for breakfast with intact caseinate). The interindividual CVs were higher than the intraindividual CVs. Mean inter- and intraindividual CVs were 19.4% and 5.7%, respectively, for breakfast with intact caseinate. Conclusion Ingestion of a specific casein hydrolysate successfully reduced the postprandial glucose response; however, at an individual level only 3 participants were classified as responders, highlighting the need for precision nutrition. Exploration of high interindividual responses to nutrition interventions is needed, in combination with the development of precision nutrition, potentially through an n-of-1 approach. This clinical trial was registered as ISRCTN61079365 (https://www.isrctn.com/).


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2173
Author(s):  
Fiona S. Atkinson ◽  
Gabriella A. Heruc ◽  
Verena M. H. Tan ◽  
Peter Petocz ◽  
Jennie C. Brand-Miller

Fasting for over 24 h is associated with worsening glucose tolerance, but the effect of extending the overnight fast period (a form of time-restricted feeding) on acute metabolic responses and insulin sensitivity is unclear. The aim of this pilot study was to determine the acute impact of an increased fasting period on postprandial glycaemia, insulinemia, and acute insulin sensitivity responses to a standard meal. Twenty-four lean, young, healthy adults (12 males, 12 females) consumed a standard breakfast after an overnight fast of 12, 14, and 16 h. Each fast duration was repeated on three separate occasions (3 × 3) in random order. Postprandial glucose and insulin responses were measured at regular intervals over 2 h and quantified as incremental area under the curve (iAUC). Insulin sensitivity was determined by homeostatic modelling assessment (HOMA). After 2 h, ad libitum food intake at a buffet meal was recorded. In females, but not males, insulin sensitivity improved (HOMA%S +35%, p = 0.016, marginally significant) with longer fast duration (16 h vs. 12 h), but paradoxically, postprandial glycaemia was higher (glucose iAUC +37%, p = 0.002). Overall, males showed no differences in glucose or insulin homeostasis. Both sexes consumed more energy (+28%) at the subsequent meal (16 h vs. 12 h). Delaying the first meal of the day by 4 h by extending the fasting period may have adverse metabolic effects in young, healthy, adult females, but not males.


Sign in / Sign up

Export Citation Format

Share Document