The Alimentary Canal of Calliphora erythrocephala L., with Special Reference to its Musculature and to the Proventriculus, Rectal Valve and Rectal Papillae

Parasitology ◽  
1934 ◽  
Vol 26 (2) ◽  
pp. 176-248 ◽  
Author(s):  
G. S. Graham-Smith

A detailed description of the musculature in the different regions of the alimentary canal of Calliphora erythrocephala is given, and an account of the structure and function of the crop, proventriculus, ducts of the Malpighian tubes, rectal valve and rectal papillae. It has been shown by dissections and experiments that a system of channels exists in the rectal papillae through which the body fluid probably circulates, and it is suggested that the very large cells may have functions resembling those of liver cells.

2021 ◽  
Vol 15 (3) ◽  
pp. 132-137
Author(s):  
Ian Peate

The gastrointestinal system is sometimes known as the digestive system or the alimentary canal. It is around 10m in length, travelling the length of the body; it begins at the mouth and ends at the anus. The main function of the digestive system is to convert food from what is eaten into a form that can be used by the cells of the body to enable them to perform their functions. This article offers readers an overview of the structure and function of the gastrointestinal system. Understanding the gastrointestinal system can help to provide care to a range of people in a range of environments, across the life span in a safe and effective way. The article includes a glossary of terms, along with a short quiz that is designed to test understanding and to aid recall.


Author(s):  
Albert W. Nyongesaa ◽  
Esther M. Malukib ◽  
Jemimah A. Simbaunib

Khat, Catha edulis, use is rampant in Eastern Africa and Middle East countries with associated reports of reproductive function impairment in the body of the user. Reports on recovery post long-term khat exposure are obscure. The present study investigated evidence of restoration of testicular and epididymal structure and function during withdrawal from cytotoxic damage caused by sub-chronic exposure of khat extract. Twenty-eight male rabbits were divided into 7 groups of 4 rabbits each. Group I (control) was administered normal saline while groups II, III and IV were administered 1.0 g/kg, 10 g/kg and 20 g/kg body weight of khat extract, respectively, via oral gavage on alternate days of the week for 12 weeks. Blood samples from animals were collected for hormonal assays followed by euthanasia using 26.4 mg/kg body weight of Sagatal sodium intramuscularly for testicular and epididymal histology. Group V, VI and VII were administered 1.0 g/kg, 10 g/kg and 20 g/kg body weight of khat extract, respectively, orally on alternate days of the week for 12 weeks followed by 1-month withdrawal period, blood samples collected for hormone assays and animals sacrificed for testicular and epididymal histology. High khat dose, 20 g/kg body weight, at sub-chronic exposure caused degeneration in spermatogenic cells with accompanying decrease in plasma FSH and testosterone. Histological output of Sertoli cells, Leydig cells and epididymal epithelium appeared unaffected in treatment groups. Post withdrawal data showed apparent regeneration of seminiferous epithelium and restoration of plasma FSH and testosterone comparable to control. It appears khat extract preferentially affected germ cell spermatogonia and subsequent daughter cells while stem cell spermatogonia were unaffected and contributed to regeneration of germinal epithelium and endocrine function.


‘Cellular structure and function’ covers the roles, structures, and functions of the main four types of macromolecules of the human body, namely proteins, lipids, carbohydrates, and nucleic acids. For these macromolecules, the roles and types of each class are discussed (for proteins this includes their roles as structural proteins and enzymes and their kinetics; for lipids, the roles and types of lipid found in the body are considered; for carbohydrates, their roles including structural and metabolic are discussed; and the structure of nucleic acids is described). Then follows a description of the organization of the cell, including the plasma membrane and its components, and the intracellular organelles. Cell growth, division, and apoptosis are covered, as are the formation of gametes, and finally the principles of how cellular functions can be modulated by pharmacological agents through receptors and signalling pathways are discussed.


1972 ◽  
Vol 10 (3) ◽  
pp. 311-332 ◽  
Author(s):  
A.S. Wright ◽  
D. Potter ◽  
M.F. Wooder ◽  
C. Donninger ◽  
R.D. Greenland

1938 ◽  
Vol 59 (2) ◽  
pp. 267-307 ◽  
Author(s):  
Alastair Graham

During recent years there has been a very great advance in our knowledge of the minute structure and function of the various regions and glands of the alimentary canal of the prosobranch and pulmonate gastropods, without any corresponding increase in our understanding of the opisthobranch and, in particular, of the nudibranch gut. That the emphasis should be laid on the streptoneurous and the land-living forms is obviously due to their abundance and to the fact that they include almost all the familiar types of gastropod mollusc, but it is disappointing that, at the moment of writing, there exists only one account of the histology and function of the digestive system of either a dorid or an æolid—to confine attention to the two main types of nudibranch molluscs which occur in British waters—that of Millott (1937b). This is perhaps more noticeable when it is recalled that the nudibranchs have specialised along distinctly unusual lines, many of which are intimately associated with the food and feeding habits which the animals have adopted. The æolids, it is true, have attracted a lively interest in connexion with their possession of nematocysts, but the majority of investigators have apparently been content to trace these into the cnidosacs without concerning themselves over the other constituents of the animal's food.


1969 ◽  
Vol 69 (5) ◽  
pp. 1075
Author(s):  
Faustena Blaisdell ◽  
Catherine Parker Anthony

2020 ◽  
Vol 21 (8) ◽  
pp. 2764
Author(s):  
Taremekedzwa Allan Sanyanga ◽  
Özlem Tastan Bishop

Human carbonic anhydrase 8 (CA-VIII) is an acatalytic isoform of the α -CA family. Though the protein cannot hydrate CO2, CA-VIII is essential for calcium (Ca2+) homeostasis within the body, and achieves this by allosterically inhibiting the binding of inositol 1,4,5-triphosphate (IP3) to the IP3 receptor type 1 (ITPR1) protein. However, the mechanism of interaction of CA-VIII to ITPR1 is not well understood. In addition, functional defects to CA-VIII due to non-synonymous single nucleotide polymorphisms (nsSNVs) result in Ca2+ dysregulation and the development of the phenotypes such as cerebellar ataxia, mental retardation and disequilibrium syndrome 3 (CAMRQ3). The pathogenesis of CAMRQ3 is also not well understood. The structure and function of CA-VIII was characterised, and pathogenesis of CAMRQ3 investigated. Structural and functional characterisation of CA-VIII was conducted through SiteMap and CPORT to identify potential binding site residues. The effects of four pathogenic nsSNVs, S100A, S100P, G162R and R237Q, and two benign S100L and E109D variants on CA-VIII structure and function was then investigated using molecular dynamics (MD) simulations, dynamic cross correlation (DCC) and dynamic residue network (DRN) analysis. SiteMap and CPORT analyses identified 38 unique CA-VIII residues that could potentially bind to ITPR1. MD analysis revealed less conformational sampling within the variant proteins and highlighted potential increases to variant protein rigidity. Dynamic cross correlation (DCC) showed that wild-type (WT) protein residue motion is predominately anti-correlated, with variant proteins showing no correlation to greater residue correlation. DRN revealed variant-associated increases to the accessibility of the N-terminal binding site residues, which could have implications for associations with ITPR1, and further highlighted differences to the mechanism of benign and pathogenic variants. SNV presence is associated with a reduction to the usage of Trp37 in all variants, which has implications for CA-VIII stability. The differences to variant mechanisms can be further investigated to understand pathogenesis of CAMRQ3, enhancing precision medicine-related studies into CA-VIII.


Sign in / Sign up

Export Citation Format

Share Document