F-actin distribution and function during sexual development in Eimeria maxima

Parasitology ◽  
2015 ◽  
Vol 142 (7) ◽  
pp. 855-864 ◽  
Author(s):  
SONJA FRÖLICH ◽  
MICHAEL WALLACH

SUMMARYTo determine the involvement of the actin cytoskeleton in macrogametocyte growth and oocyst wall formation, freshly purified macrogametocytes and oocysts were stained with Oregon Green 514 conjugated phalloidin to visualize F-actin microfilaments, while Evans blue staining was used to detect type 1 wall forming bodies (WFB1s) and the outer oocyst wall. The double-labelled parasites were then analysed at various stages of sexual development using three-dimensional confocal microscopy. The results showed F-actin filaments were distributed throughout the entire cytoplasm of mature Eimeria maxima macrogametocytes forming a web-like meshwork of actin filaments linking the type 1 WFBs together into structures resembling ‘beads on a string’. At the early stages of oocyst wall formation, F-actin localization changed in alignment with the egg-shaped morphology of the forming oocysts with F-actin microfilaments making direct contact with the WFB1s. In tissue oocysts, the labelled actin cytoskeleton was situated underneath the forming outer layer of the oocyst wall. Treatment of macrogametocytes in vitro with the actin depolymerizing agents, Cytochalasin D and Latrunculin, led to a reduction in the numbers of mature WFB1s in the cytoplasm of the developing macrogametocytes, indicating that the actin plays an important role in WFB1 transport and oocyst wall formation in E. maxima.

Parasitology ◽  
1981 ◽  
Vol 83 (2) ◽  
pp. 285-291 ◽  
Author(s):  
R. M. Pittilo ◽  
S. J. Ball ◽  
L. P. Joyner ◽  
C. C. Norton

SUMMARYThe ultrastructure of the macrogamete and developing oocyst of Eimeria maxima (Weybridge strain) was examined in the intestinal cells of chicks fed 3 different anticoccidial drugs. Amprolium at 125 p.p.m., arprinocid at 35 p.p.m. and dinitolmide at 250 p.p.m. caused considerable morphological abnormality and incomplete development of the wall-forming bodies of Type 2 (WFB II), which did not appear able to participate in oocyst wall formation. The wall-forming bodies of Type 1 (WFB I) were able in each case to participate in oocyst wall formation although amprolium and dinitolmide produced morphological abnormalities in them. In birds medicated with dinitolmide, the outer layer of the oocyst wall was formed initially at opposite poles of the macrogame tes rather than as a uniform layer. Other abnormalities resulting from drug treatment are reported and some evidence that intravacuolar tubules may be formed by the parasite pellicle is presented.


Author(s):  
Ying Zhang ◽  
Philip R. LeDuc

The actin cytoskeleton provides mechanical support for the cell and influences activities such as cancer metastasis and chemotaxis. While their mechanical responses have been studied in vivo and in vitro, understanding the link between these two forms remains challenging. To explore this gap and further understand cell structure, we reconstructed the cell cytoskeleton in a membrane-like spherical liposome to mimic the cellular environment; this enables an artificial “cell like” system. Through this approach, we are pursuing a path to compare in vitro mechanics from a polymer physics perspective of individual actin filaments with the in vivo mechanics of a living cell [1]. A living cell contains many organelles, which are in a highly packed environment and require significant organization to function. The actin cytoskeleton provides both structural and organizational regulation that is essential for cellular response. Here, we first encapsulated G-actin into giant unilamellar vesicles through an electroformation technique and then polymerized them into actin filaments (F-actin) within individual vesicles. To probe their conformation, we visualized these vesicles with fluorescence and laser scanning confocal microscopy. We then used a tapping mode atomic force microscopy to determine the mechanical properties of these cell-like systems. These results provide insight into a wide range of fields and studies including polymer physics, cell biology, and biotechnology.


2020 ◽  
Vol 117 (41) ◽  
pp. 25532-25542 ◽  
Author(s):  
Jonathan D. Winkelman ◽  
Caitlin A. Anderson ◽  
Cristian Suarez ◽  
David R. Kovar ◽  
Margaret L. Gardel

The actin cytoskeleton assembles into diverse load-bearing networks, including stress fibers (SFs), muscle sarcomeres, and the cytokinetic ring to both generate and sense mechanical forces. The LIM (Lin11, Isl- 1, and Mec-3) domain family is functionally diverse, but most members can associate with the actin cytoskeleton with apparent force sensitivity. Zyxin rapidly localizes via its LIM domains to failing SFs in cells, known as strain sites, to initiate SF repair and maintain mechanical homeostasis. The mechanism by which these LIM domains associate with stress fiber strain sites (SFSS) is not known. Additionally, it is unknown how widespread strain sensing is within the LIM protein family. We identify that the LIM domain-containing region of 18 proteins from the Zyxin, Paxillin, Tes, and Enigma proteins accumulate to SFSS. Moreover, the LIM domain region from the fission yeast protein paxillin like 1 (Pxl1) also localizes to SFSS in mammalian cells, suggesting that the strain sensing mechanism is ancient and highly conserved. We then used sequence and domain analysis to demonstrate that tandem LIM domains contribute additively, for SFSS localization. Employing in vitro reconstitution, we show that the LIM domain-containing region from mammalian zyxin and fission yeast Pxl1 binds to mechanically stressed F-actin networks but does not associate with relaxed actin filaments. We propose that tandem LIM domains recognize an F-actin conformation that is rare in the relaxed state but is enriched in the presence of mechanical stress.


2003 ◽  
Vol 2 (3) ◽  
pp. 456-464 ◽  
Author(s):  
Sabina I. Belli ◽  
Michael G. Wallach ◽  
Catherine Luxford ◽  
Michael J. Davies ◽  
Nicholas C. Smith

ABSTRACT The oocyst wall of apicomplexan parasites protects them from the harsh external environment, preserving their survival prior to transmission to the next host. If oocyst wall formation could be disrupted, then logically, the cycle of disease transmission could be stopped, and strategies to control infection by several organisms of medical and veterinary importance such as Eimeria, Plasmodium, Toxoplasma, Cyclospora, and Neospora could be developed. Here, we show that two tyrosine-rich precursor glycoproteins, gam56 and gam82, found in specialized organelles (wall-forming bodies) in the sexual stage (macrogamete) of Eimeria maxima are proteolytically processed into smaller glycoproteins, which are then incorporated into the developing oocyst wall. The identification of high concentrations of dityrosine and 3,4-dihydroxyphenylalanine (DOPA) in oocyst extracts by high-pressure liquid chromatography, together with the detection of a UV autofluorescence in intact oocysts, implicates dityrosine- and possibly DOPA-protein cross-links in oocyst wall hardening. In addition, the identification of peroxidase activity in the wall-forming bodies of macrogametes supports the hypothesis that dityrosine- and DOPA-mediated cross-linking might be an enzyme-catalyzed event. As such, the mechanism of oocyst wall formation in Eimeria, is analogous to the underlying mechanisms involved in the stabilization of extracellular matrices in a number of organisms, widely distributed in nature, including insect resilin, nematode cuticles, yeast cell walls, mussel byssal threads, and sea urchin fertilization membranes.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 755-755 ◽  
Author(s):  
Maria Feola ◽  
Andrea Zamperone ◽  
Weili Bao ◽  
Tenzin Choesang ◽  
Huihui Li ◽  
...  

Abstract Erythropoiesis is a process during which multipotent hematopoietic stem cells proliferate, differentiate and ultimately produce enucleated reticulocytes. Terminal erythroid differentiation begins at the morphologically recognizable pro-erythroblast (pro-E) stage and is completed when orthochromatic erythroblasts (ortho-E) expel their nuclei to produce reticulocytes. Progressive differentiation between these stages occurs in homologous cell division progressively doubling proportions of pro-E, basophilic (baso-E), polychromatophilic (poly-E), and ortho-E, and multiple signaling pathways are involved in the generation of enucleated erythroid cells, including multiple steps requiring actin cytoskeleton reorganization. We have previously shown that β-thalassemic mice (th1/th1) demonstrate a disordered progression from pro-E to baso-E and that exogenous transferrin therapy restores normal proportion of early stage erythroid precursors in th1/th1 mice (Liu Blood 2013). To identify genes that play novel function in different stages of terminal erythropoiesis, we performed RNA seq analysis of sorted bone marrow pro-E from WT, th1/th1, and transferrin-treated th1/th1 mice. We identify pleckstrin-2 (plek2) as a gene of interest with a 15-fold increase in plek2 mRNA expression in th1/th1 relative to WT mice, normalized in transferrin-treated th1/th1 mice. Plek2 is an actin binding protein, like pleckstrin-1, contains a central DEP domain known to bind RacGTPase, is Epo dependent, and is expressed in all stages of terminal erythropoiesis. We evaluate plek2 mRNA and protein expression in sorted bone marrow erythroid precursors from WT, th1/th1, and transferrin-treated th1/th1 mice. Our data demonstrates a statistically significant increase in plek2 mRNA in th1/th1 relative to WT mice, with the highest expression of plek2 in poly-E, normalized in transferrin-treated th1/th1 mice (Figure 1A). A similar pattern of increased protein concentration in th1/th1 relative to WT mice and normalization in transferrin-treated th1/th1 mice is evident in sorted bone marrow samples (Figure 1B). Prior in vitro studies demonstrate that membrane localization of plek2 is required for erythroid differentiation. Thus, we performed sub-cellular fractionation in bone marrow erythroid precursors and determined for the first time that in sorted erythroblasts from WT bone marrow, plek2 is found exclusively in the cytoplasm in pro-E and in both cytoplasm and membrane from baso-E to ortho-E (Figure 2), co-localized with actin filaments in the membrane (data not shown). In contrast, sorted erythroblasts from th1/th1 bone marrow reveal membrane-associated plek2 starting from pro-E, demonstrating earlier co-localization with actin filaments (data not shown) and suggesting an earlier activation of plek2 and consequent actin cytoskeleton reorganization during erythroid differentiation in th1/th1 mice, normalized in transferrin-treated th1/th1 mice (Figure 2). Erythropoiesis involves a complicated and incompletely understood set of potentially related molecular signals influencing cell survival, differentiation, enucleation, and release into the circulation. For example, although Epo increases survival, Epo signaling also activates RacGTPases, inhibiting enucleation. Recent in vitro data demonstrates that knockdown of plek2 affected enucleation with significantly lower reticulocyte count. Although the involvement of RacGTPase in plek2-mediated erythroid differentiation has not been explored, we hypothesize that plek2 activation triggers RacGTPase and prevents enucleation in th1/th1 mice. Our data demonstrates that RacGTPase concentration is increased in sorted bone marrow erythroid precursors from th1/th1 relative to WT mice and normalized in transferrin-treated th1/th1 mice (Figure 1B). These results suggest that plek2 plays an important role in erythropoiesis likely as a key factor in the improved enucleation of transferrin-treated th1/th1 mice. Disclosures No relevant conflicts of interest to declare.


Science ◽  
2018 ◽  
Vol 362 (6417) ◽  
pp. 949-952 ◽  
Author(s):  
G. Lebreton ◽  
C. Géminard ◽  
F. Lapraz ◽  
S. Pyrpassopoulos ◽  
D. Cerezo ◽  
...  

The emergence of asymmetry from an initially symmetrical state is a universal transition in nature. Living organisms show asymmetries at the molecular, cellular, tissular, and organismal level. However, whether and how multilevel asymmetries are related remains unclear. In this study, we show that Drosophila myosin 1D (Myo1D) and myosin 1C (Myo1C) are sufficient to generate de novo directional twisting of cells, single organs, or the whole body in opposite directions. Directionality lies in the myosins’ motor domain and is swappable between Myo1D and Myo1C. In addition, Myo1D drives gliding of actin filaments in circular, counterclockwise paths in vitro. Altogether, our results reveal the molecular motor Myo1D as a chiral determinant that is sufficient to break symmetry at all biological scales through chiral interaction with the actin cytoskeleton.


2013 ◽  
Vol 24 (15) ◽  
pp. 2299-2302 ◽  
Author(s):  
William Brieher

The actin cytoskeleton is constantly assembling and disassembling. Cells harness the energy of these turnover dynamics to drive cell motility and organize cytoplasm. Although much is known about how cells control actin polymerization, we do not understand how actin filaments depolymerize inside cells. I briefly describe how the combination of imaging actin filament dynamics in cells and using in vitro biochemistry progressively altered our views of actin depolymerization. I describe why I do not think that the prevailing model of actin filament turnover—cofilin-mediated actin filament severing—can account for actin filament disassembly detected in cells. Finally, I speculate that cells might be able to tune the mechanism of actin depolymerization to meet physiological demands and selectively control the stabilities of different actin arrays.


2010 ◽  
Vol 30 (19) ◽  
pp. 4604-4615 ◽  
Author(s):  
Masahiro Tanji ◽  
Toshimasa Ishizaki ◽  
Saman Ebrahimi ◽  
Yuko Tsuboguchi ◽  
Taiko Sukezane ◽  
...  

ABSTRACT The small GTPase Rho regulates cell morphogenesis through remodeling of the actin cytoskeleton. While Rho is overexpressed in many clinical cancers, the role of Rho signaling in oncogenesis remains unknown. mDia1 is a Rho effector producing straight actin filaments. Here we transduced mouse embryonic fibroblasts from mDia1-deficient mice with temperature-sensitive v-Src and examined the involvement and mechanism of the Rho-mDia1 pathway in Src-induced oncogenesis. We showed that in v-Src-transduced mDia1-deficient cells, formation of actin filaments is suppressed, and v-Src in the perinuclear region does not move to focal adhesions upon a temperature shift. Consequently, membrane translocation of v-Src, v-Src-induced morphological transformation, and podosome formation are all suppressed in mDia1-deficient cells with impaired tyrosine phosphorylation. mDia1-deficient cells show reduced transformation in vitro as examined by focus formation and colony formation in soft agar and exhibit suppressed tumorigenesis and invasion when implanted in nude mice in vivo. Given overexpression of c-Src in various cancers, these findings suggest that Rho-mDia1 signaling facilitates malignant transformation and invasion by manipulating the actin cytoskeleton and targeting Src to the cell periphery.


2019 ◽  
Author(s):  
Anna Sophia Feix ◽  
Teresa Cruz-Bustos ◽  
Bärbel Ruttkowski ◽  
Anja Joachim

Abstract Background: The porcine coccidium Cystoisospora suis is characterized by a complex life cycle during which asexual multiplication is followed by sexual development with two morphologically distinct cell types, the micro- and macrogametes. Genes related to the sexual stages and cell cycle progression were previously identified in related Apicomplexa. Here, the sexual stages of C. suis were characterized in vitro morphologically and for temporal expression changes of the mentioned genes to gain insight into this poorly known phase of coccidian development.Methods: Sexual stages of C. suis (micro- and macrogametes) developing in vitro in porcine intestinal epithelial cells were examined by light and electron microscopy. The transcriptional levels of genes related to merozoite multiplication and sexual development were evaluated by quantitative real-time PCR at different time points of cultivation. Dynein light chain type 1 and male gamete fusion factor HAP2 expression is presumably restricted to microgametes. Tyrosin-rich proteins are a part of the wall-forming bodies and oocyst wall proteins. The RAD51/Dmc1 protein plays a role during the cell division process, and Nima-related protein kinases regulate the cell cycle and are associated with male or female Plasmodium gametocytes. Transcription levels were compared for parasites in culture supernatants at 6–9 doc (day of cultivation) and intracellular parasites at 6–15 doc.Results: Sexual stage of C. suis could be found during 8–11 doc in vitro. Microgametes had a spherical body (3.0–5.0 µm) and two flagella (10.8–12.3 µm). Macrogametes were spherical with a diameter of 11.5–13.0 µm. Merozoite gene transcription peaked on 10 doc and then declined. Genes related to the sexual stages and cell cycle showed an upregulation with a peak on 13 doc, after which they declined. Conclusions: The present work linked gene expression changes to the detailed morphological description of C. suis sexual development in vitro, including fertilization, meiosis and oocyst formation in vitro. Following this process at the cellular and molecular level will elucidate details on potential bottlenecks of development of C. suis (and coccidian parasites in general) which could be exploited as novel targets for control.


2020 ◽  
Author(s):  
Anna Sophia Feix ◽  
Teresa Cruz-Bustos ◽  
Bärbel Ruttkowski ◽  
Anja Joachim

Abstract Background: The porcine coccidium Cystoisospora suis is characterized by a complex life-cycle during which asexual multiplication is followed by sexual development with two morphologically distinct cell types, the micro- and macrogametes. Genes related to the sexual stages and cell cycle progression were previously identified in related Apicomplexa. Dynein light chain type 1 and male gamete fusion factor HAP2 are restricted to microgametes. Tyrosin-rich proteins and oocyst wall proteins are a part of the oocyst wall. The Rad51/Dmc1-like protein and Nima-related protein kinases are associated with the cell cycle and fertilization process.Here, the sexual stages of C. suis were characterized in vitro morphologically and for temporal expression changes of the mentioned genes to gain insight into this poorly known phase of coccidian development.Methods: Sexual stages of C. suis developing in vitro in porcine intestinal epithelial cells were examined by light and electron microscopy. The transcriptional levels of genes related to merozoite multiplication and sexual development were evaluated by quantitative real-time PCR at different time points of cultivation. Transcription levels were compared for parasites in culture supernatants at 6–9 days of cultivation (doc) and intracellular parasites at 6–15 doc.Results: Sexual stage of C. suis was deteceted during 8–11 doc in vitro. Microgamonts (16.8 ± 0.9 µm) and macrogamonts (16.6 ± 1.1 µm) are very similar in shape and size. Microgametes had a round body (3.5 ± 0.5 µm) and two flagella (11.2 ± 0.5 µm). Macrogametes were spherical with a diameter of 12.1 ± 0.5 µm. Merozoite gene transcription peaked on 10 doc and then declined. Genes related to the sexual stages and cell cycle showed an upregulation with a peak on 13 doc, after which they declined.Conclusions: The present study linked gene expression changes to the detailed morphological description of C. suis sexual development in vitro, including fertilization, meiosis and oocyst formation in this unique model for coccidian parasites. Following this process at the cellular and molecular level will elucidate details on potential bottlenecks of C. suis development (applicable for coccidian parasites in general) which could be exploited as a novel target for control.


Sign in / Sign up

Export Citation Format

Share Document