A preliminary archaeological survey of Camp Wellman at Virgohamn, Danskøya, Svalbard

Polar Record ◽  
1994 ◽  
Vol 30 (175) ◽  
pp. 265-276 ◽  
Author(s):  
P.J. Capelotti

ABSTRACTBetween 1894 and 1909, Walter Wellman (1858–1934), a Chicago-based journalist and explorer, organized and led five expeditions to reach the North Pole. Wellman launched his most ambitious undertaking in 1906, constructing an extensive base camp complete with an airship hangar on the shoreline of Virgohamn, a small harbor on Danskøya in the Svalbard archipelago. In 1907 and 1909, Wellman's two flights in the dirigible airship America marked the first time a motorized airship had flown in the Arctic. In the summer of 1993, the author surveyed and mapped the extent of the remains of Wellman's camp to discover and document any surviving wreckage of America, and to observe the impact of tourist traffic on the site. This paper describes the 1993 survey of Wellman's base camp at Virgohamn and offers suggestions for its preservation.

2021 ◽  
Author(s):  
Kevin Ohneiser ◽  
Ronny Engelmann ◽  
Albert Ansmann ◽  
Martin Radenz ◽  
Hannes Griesche ◽  
...  

<p>The MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition, lasting from September 2019 to October 2020, was the largest Arctic research initiative in history. The goal of the expedition was to take the closest look ever at the Arctic as the epicenter of global warming and to gain fundamental insights that are key to better understand global climate change. We continuously operated a multiwavelength aerosol/cloud Raman lidar aboard the icebreaker Polarstern, drifting through the Arctic Ocean trapped in the ice from October to May, and monitored aerosol and cloud layers in the Central Arctic up to 30 km height at latitudes mostly > 85°N. The lidar was integrated in a complex remote sensing infrastructure aboard Polarstern. A polarization Raman lidar is designed to separate the main continental aerosol components (mineral dust, wildfire smoke, anthropogenic haze, volcanic aerosol). Furthermore, the Polarstern lidar enabled us to study the impact of these different basic aerosol types on the evolution of Arctic mixed-phase and ice clouds.  The most impressive and unprecedented observation was the detection of a persistent, 10 km deep aerosol layer of aged wildfire smoke over the North Pole region between 8 and 18 km height from October 2019 until the beginning of May 2020. The wildfire smoke layers originated from severe and huge fires in Siberia, Alaska, and western North America in 2019 and may have contained mineral dust injected into the atmosphere over the hot fire places together with the smoke. We will present the main MOSAiC findings including a study of a long-lasting mixed-phase cloud layer evolving in Arctic haze (at heights below 6 km) and the role of mineral dust in the Arctic haze mixture to trigger heterogeneous ice formation. Furthermore, we present a case study developing in the smoke-dominated layer around 10 km height.</p>


2019 ◽  
pp. 3-20
Author(s):  
V.N. Leksin

The impact on healthcare organization on the territory of Russian Arctic of unique natural and climatic, demographic, ethnic, settlement and professional factors of influencing the health of population, constantly or temporarily living on this territory is studied. The necessity is substantiated of various forms and resource provision with healthcare services such real and potential patients of Arctic medical institutions, as representatives of indigenous small peoples of the North, workers of mining and metallurgical industry, military personnel, sailors and shift workers. In this connection a correction of a number of All-Russian normative acts is proposed.


2011 ◽  
Vol 193 (2) ◽  
pp. 474-480 ◽  
Author(s):  
Matthias H. Hoffmann

1975 ◽  
Vol 15 (73) ◽  
pp. 193-213
Author(s):  
Moira Dunbar

AbstractSLAR imagery of Nares Strait was obtained on three flights carried out in. January, March, and August of 1973 by Canadian Forces Maritime Proving and Evaluation Unit in an Argus aircraft equipped with a Motorola APS-94D SLAR; the March flight also covered two lines in the Arctic Ocean, from Alert 10 the North Pole and from the Pole down the long. 4ºE. meridian to the ice edge at about lat. 80º N. No observations on the ground were possible, but -some back-up was available on all flights from visual observations recorded in the air, and on the March flight from infrared line-scan and vertical photography.The interpretation of ice features from the SLAR imagery is discussed, and the conclusion reached that in spite of certain ambiguities the technique has great potential which will increase with improving resolution, Extent of coverage per distance flown and independence of light and cloud conditions make it unique among airborne sensors.


2019 ◽  
Vol 32 (18) ◽  
pp. 5997-6014 ◽  
Author(s):  
Edward Blanchard-Wrigglesworth ◽  
Qinghua Ding

Abstract The impact on seasonal polar predictability from improved tropical and midlatitude forecasts is explored using a perfect-model experiment and applying a nudging approach in a GCM. We run three sets of 7-month long forecasts: a standard free-running forecast and two nudged forecasts in which atmospheric winds, temperature, and specific humidity (U, V, T, Q) are nudged toward one of the forecast runs from the free ensemble. The two nudged forecasts apply the nudging over different domains: the tropics (30°S–30°N) and the tropics and midlatitudes (55°S–55°N). We find that the tropics have modest impact on forecast skill in the Arctic or Antarctica both for sea ice and the atmosphere that is mainly confined to the North Pacific and Bellingshausen–Amundsen–Ross Seas, whereas the midlatitudes greatly improve Arctic winter and Antarctic year-round forecast skill. Arctic summer forecast skill from May initialization is not strongly improved in the nudged forecasts relative to the free forecast and is thus mostly a “local” problem. In the atmosphere, forecast skill improvement from midlatitude nudging tends to be largest in the polar stratospheres and decreases toward the surface.


2015 ◽  
Vol 105 (2) ◽  
pp. 210-224 ◽  
Author(s):  
U. Bernardo ◽  
E.J. van Nieukerken ◽  
R. Sasso ◽  
M. Gebiola ◽  
L. Gualtieri ◽  
...  

AbstractThe leafminer Coptodisca sp. (Lepidoptera: Heliozelidae), recently recorded for the first time in Europe on Italian black and common walnut trees, is shown to be the North-American Coptodisca lucifluella (Clemens) based on morphological (forewing pattern) and molecular (cytochrome oxidase c subunit I sequence) evidence. The phylogenetic relatedness of three species feeding on Juglandaceae suggests that C. lucifluella has likely shifted, within the same host plant family, from its original North-American hosts Carya spp. to Juglans spp. Over the few years since its detection, it has established in many regions in Italy and has become a widespread and dominant invasive species. The leafminer completes three to four generations per year, with the first adults emerging in April–May and mature larvae of the last generation starting hibernation in September–October. Although a high larval mortality was recorded in field observations (up to 74%), the impact of the pest was substantial with all leaves infested at the end of the last generation in all 3 years tested. The distribution of the leafminer in the canopy was homogeneous. The species is redescribed and illustrated, a lectotype is designated and a new synonymy is established.


Ocean Science ◽  
2017 ◽  
Vol 13 (3) ◽  
pp. 379-410 ◽  
Author(s):  
Burkard Baschek ◽  
Friedhelm Schroeder ◽  
Holger Brix ◽  
Rolf Riethmüller ◽  
Thomas H. Badewien ◽  
...  

Abstract. The Coastal Observing System for Northern and Arctic Seas (COSYNA) was established in order to better understand the complex interdisciplinary processes of northern seas and the Arctic coasts in a changing environment. Particular focus is given to the German Bight in the North Sea as a prime example of a heavily used coastal area, and Svalbard as an example of an Arctic coast that is under strong pressure due to global change.The COSYNA automated observing and modelling system is designed to monitor real-time conditions and provide short-term forecasts, data, and data products to help assess the impact of anthropogenically induced change. Observations are carried out by combining satellite and radar remote sensing with various in situ platforms. Novel sensors, instruments, and algorithms are developed to further improve the understanding of the interdisciplinary interactions between physics, biogeochemistry, and the ecology of coastal seas. New modelling and data assimilation techniques are used to integrate observations and models in a quasi-operational system providing descriptions and forecasts of key hydrographic variables. Data and data products are publicly available free of charge and in real time. They are used by multiple interest groups in science, agencies, politics, industry, and the public.


2008 ◽  
Vol 27 (2) ◽  
pp. 164-187 ◽  
Author(s):  
Torben Wolff

The Danish Ingolf Expedition took place in the summer months of 1895 and 1896, with C. F. Wandel as captain, a man with long experience in hydrographical work in the Arctic. The other scientific participants were the zoologists H. Jungersen, W. Lundbeck and H. J. Hansen during the 1895 cruise; C. Wesenberg-Lund replaced Hansen during the 1896 cruise. C. H. Ostenfeld was the botanist and M. Knudsen the hydrographer. The Ingolf (see Figure 1) was a naval cruiser. In both years the voyages were hindered by ice that had moved much further south than normal, even closing most of the Denmark Strait. In 1895, the best results were obtained south of Iceland and in the Davis Strait; in 1896 south and east of Iceland and as far north as Jan Mayen Island. A total of 144 stations were completed, all with soundings, trawlings and (for the first time) continuous hydrographical work associated with the deep-sea trawling (bottom measurements of temperature, salinity, chlorine contents and specific gravity). Eighty of the stations were deeper than 1,000 m. There were more than 800 hydrographical measurements, with about 3,300 registrations recordings added on the basis of the measurements. 138 gas analyses were performed on board with samples from the surface and the sea bottom. The main result of the expedition was the final demonstration of probably the most important threshold boundaries in the world: the Wyville Thompson Ridge from East Greenland to Scotland with maximum depths of 600 m, separating the fauna in the Norwegian and Polar Sea to the north, always with negative below-zero temperatures except close to the Norwegian coast, from the fundamentally different general Atlantic deep-sea fauna to the south of the ridge with positive temperatures. The results are published in the Ingolf Report, with fifteen volumes containing forty-three papers by nineteen Danish authors and fourteen papers by six foreign authors. The sieving technique was excellent—due to an apparatus designed by H. J. Hansen that kept the animals under water until preservation and using the finest silk for sieving. In this way, the expedition collected more smaller animals than had been acquired by previous deep-sea expeditions. Hansen's studies of the peracarid crustaceans and parasitic copepods and Lundbeck's report on the sponges were particularly noteworthy. The 130 photographs taken on board and on land by the ship's doctor William Thulstrup represent a cultural/historical treasure.


Sign in / Sign up

Export Citation Format

Share Document