scholarly journals Longitudinal changes in brain activation during anticipation of monetary loss in bipolar disorder

2018 ◽  
Vol 49 (16) ◽  
pp. 2781-2788 ◽  
Author(s):  
Anna Manelis ◽  
Richelle Stiffler ◽  
Jeanette C. Lockovich ◽  
Jorge R. C. Almeida ◽  
Haris A. Aslam ◽  
...  

AbstractBackgroundIndividuals with bipolar disorder (BD) show aberrant brain activation patterns during reward and loss anticipation. We examined for the first time longitudinal changes in brain activation during win and loss anticipation to identify trait markers of aberrant anticipatory processing in BD.MethodsThirty-four euthymic and depressed individuals with BD-I and 17 healthy controls (HC) were scanned using functional magnetic resonance imaging twice 6 months apart during a reward task.ResultsHC, but not individuals with BD, showed longitudinal reductions in the right lateral occipital cortex (RLOC) activation during processing of cues predicting possible money loss (p-corrected <0.05). This result was not affected by psychotropic medication, mood state or the changes in depression/mania severity between the two scans in BD. Elevated symptoms of subthreshold hypo/mania at baseline predicted more aberrant longitudinal patterns of RLOC activation explaining 12.5% of variance in individuals with BD.ConclusionsIncreased activation in occipital cortex during negative outcome anticipation may be related to elevated negative emotional arousal during anticipatory cue processing. One interpretation is that, unlike HC, individuals with BD were not able to learn at baseline that monetary losses were smaller than monetary gains and were not able to reduce emotional arousal for negative cues 6 months later. Future research in BD should examine how modulating occipital cortical activation affects learning from experience in individuals with BD.

2013 ◽  
Vol 25 (4pt1) ◽  
pp. 931-941 ◽  
Author(s):  
Jacqueline Bruce ◽  
Philip A. Fisher ◽  
Alice M. Graham ◽  
William E. Moore ◽  
Shannon J. Peake ◽  
...  

AbstractChildren in foster care have often encountered a range of adverse experiences, including neglectful and/or abusive care and multiple caregiver transitions. Prior research findings suggest that such experiences negatively affect inhibitory control and the underlying neural circuitry. In the current study, event-related functional magnetic resonance imaging was employed during a go/no go task that assesses inhibitory control to compare the behavioral performance and brain activation of foster children and nonmaltreated children. The sample included two groups of 9- to 12-year-old children: 11 maltreated foster children and 11 nonmaltreated children living with their biological parents. There were no significant group differences on behavioral performance on the task. In contrast, patterns of brain activation differed by group. The nonmaltreated children demonstrated stronger activation than did the foster children across several regions, including the right anterior cingulate cortex, the middle frontal gyrus, and the right lingual gyrus, during correct no go trials, whereas the foster children displayed stronger activation than the nonmaltreated children in the left inferior parietal lobule and the right superior occipital cortex, including the lingual gyrus and cuneus, during incorrect no go trials. These results provide preliminary evidence that the early adversity experienced by foster children impacts the neural substrates of inhibitory control.


2005 ◽  
Vol 288 (6) ◽  
pp. R1581-R1588 ◽  
Author(s):  
Michelle Moody ◽  
Ronney B. Panerai ◽  
Penelope J. Eames ◽  
John F. Potter

Cognitive and/or sensorimotor stimulations of the brain induce increases in cerebral blood flow that are usually associated with increased metabolic demand. We tested the hypothesis that changes in arterial blood pressure (ABP) and arterial Pco2 also take place during brain activation protocols designed to induce hemispheric lateralization, leading to a pressure-autoregulatory response in addition to the metabolic-driven changes usually assumed by brain stimulation paradigms. Continuous recordings of cerebral blood flow velocity [CBFV; bilateral, middle cerebral artery (MCA)], ABP, ECG, and end-tidal Pco2 (PetCO2) were performed in 15 right-handed healthy subjects (aged 21–43 yr), in the seated position, at rest and during 10 repeated presentations of a word generation and a constructional puzzle paradigm that are known to induce differential cortical activation. Derived variables included heart rate, cerebrovascular resistance, critical closing pressure, resistance area product, and the difference between the right and left MCA recordings (CBFVR-L). No adaptation of the CBFVR-L difference was detected for the repeated presentation of 10 activation tasks, for either paradigm. During activation with the word generation tasks, CBFV changed by (mean ± SD) 9.0 ± 3.7% (right MCA, P = 0.0007) and by 12.3 ± 7.6% (left MCA, P = 0.0007), ABP by 7.7 ± 6.0 mmHg ( P = 0.0007), heart rate by 7.1 ± 5.3 beats/min ( P = 0.0008), and PetCO2 by −2.32 ± 2.23 Torr ( P = 0.002). For the puzzle paradigm, CBFV changed by 13.9 ± 6.6% (right MCA, P = 0.0007) and by 11.5 ± 6.2% (left MCA, P = 0.0007), ABP by 7.1 ± 8.4 mmHg ( P = 0.0054), heart rate by 7.9 ± 4.6 beats/min ( P = 0.0008), and PetCO2 by −2.42 ± 2.59 Torr ( P = 0.001). The word paradigm led to greater left hemispheric dominance than the right hemispheric dominance observed with the puzzle paradigm ( P = 0.004). We concluded that significant changes in ABP and PetCO2 levels occur during brain activation protocols, and these contribute to the evoked change in CBFV. A pressure-autoregulatory response can be observed in addition to the hemodynamic changes induced by increases in metabolic demand. Simultaneous changes in Pco2 and heart rate add to the complexity of the response, indicating the need for more detailed modeling and better understanding of brain activation paradigms.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Pei-Ying S. Chan ◽  
Yu-Ting Wu ◽  
Ai-Ling Hsu ◽  
Chia-Wei Li ◽  
Changwei W. Wu ◽  
...  

Abstract Respiratory sensations such as breathlessness are prevalent in many diseases and are amplified by increased levels of anxiety. Cortical activation in response to inspiratory occlusions in high- and low-anxious individuals was found different in previous studies using the respiratory-related evoked potential method. However, specific brain areas showed different activation patterns remained unknown in these studies. Therefore, the purpose of this study was to compare cortical and subcortical neural substrates of respiratory sensation in response to inspiratory mechanical occlusion stimuli between high- and low-anxious individuals using functional magnetic resonance imaging (fMRI). In addition, associations between brain activation patterns and levels of anxiety, and breathlessness were examined. Thirty-four (17 high- and 17 low-anxious) healthy non-smoking adults with normal lung function completed questionnaires on anxiety (State Trait Anxiety Inventory - State), and participated in a transient inspiratory occlusion fMRI experiment. The participants breathed with a customized face-mask while respiration was repeatedly interrupted by a transient inspiratory occlusion of 150-msec, delivered every 2 to 4 breaths. Breathlessness was assessed by self-report. At least 32 occluded breaths were collected for data analysis. The results showed that compared to the low-anxious group, the high-anxious individuals demonstrated significantly greater neural activations in the hippocampus, insula, and middle cingulate gyrus in response to inspiratory occlusions. Moreover, a significant relationship was found between anxiety levels and activations of the right inferior parietal gyrus, and the right precuneus. Additionally, breathlessness levels were significantly associated with activations of the bilateral thalamus, bilateral insula and bilateral cingulate gyrus. The above evidences support stronger recruitment of emotion-related cortical and subcortical brain areas in higher anxious individuals, and thus these areas play an important role in respiratory mechanosensation mediated by anxiety.


2010 ◽  
Vol 22 (2) ◽  
pp. 54-62 ◽  
Author(s):  
Kathrin Houshmand ◽  
Peter Bräunig ◽  
Siegfried Gauggel ◽  
Katrin Kliesow ◽  
Rahul Sarkar ◽  
...  

Scheuch K, Bräunig P, Gauggel S, Kliesow K, Sarkar R, Krüger S. Emotional vulnerability and cognitive control in patients with bipolar disorder and their healthy siblings: a pilot study.Objective:There is evidence that, even in remission, patients with bipolar disorder (BD) have deficits in cognitive function and emotional regulation. Siblings of patients with BD are also reported to exhibit minor dysfunction in neuropsychological domains. In this study, we examined the interference of acute mood state with reaction time (RT) and response inhibition in euthymic patients with BD, in their healthy siblings and in healthy controls.Methods:A total of 34 patients with bipolar I disorder, 22 healthy siblings and 33 healthy controls performed a stop-signal paradigm after induction of a transient intense sadness and a relaxed mood state. The differences in RT and the response inhibition were compared between the groups.Results:Euthymic patients with BD displayed a higher emotional reactivity compared with their siblings and with controls. Compared with controls, patients with BD showed longer RTs in a relaxed mood state and a delay in response inhibition during emotional activation.Conclusions:The present study provides evidence for the clinical observation that patients with BD have shorter RTs when in a state of emotional arousal rather than in a relaxed state. Inhibitory deficits in these patients may be because of a too strong emotional arousal. The results show that in patients with BD, relaxation and emotional arousal are inversely associated with performance in a neuropsychological task. This is in contrast to findings in healthy individuals suggesting a dysbalance in emotional regulation in these patients.


Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 25-25
Author(s):  
S Vanni

A visual stimulus typically activates several cortical areas, both sequentially and overlapping in time. Characterisation of this temporal activation sequence has significantly improved with the recent development of whole-scalp neuromagnetometers. The magnetoencephalographic (MEG) signals mainly arise from time-locked cortical activity. Although the spatial localisation of several simultaneously active areas is ambiguous because of the non-uniqueness of the inverse problem, the comparison of estimated source regions across observers and utilisation of previous functional knowledge can usually resolve this ambiguity. Visual object naming, for example, generates cortical activation progressing bilaterally from occipital to temporal and frontal lobes. Simultaneously, the parieto-occipital alpha rhythm dampens as a function of task demands. Similarly, this rhythm is at a lower level after objects than non-objects in an object-detection task, which suggests that the parieto-occipital area is active when attending to visual form. In addition, this area generates evoked responses after voluntary blinks, saccades, and luminance increments, which in turn suggests that it participates in the updating of visual percepts. The sources of extrastriate MEG signals are generally in good agreement with the location of activation found with other imaging methods: visual motion activates the V5 in the ascending limb of the inferior temporal sulcus, faces the ventral temporo-occipital cortex, and objects the lateral occipital (LO) regions. Interestingly, the strength of the right LO activity closely follows the proportion of correctly detected objects. The future neuromagnetic studies will focus not only on functional localisation of the active areas, but also on how the brain processes various stimuli.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiaying Gong ◽  
Junjing Wang ◽  
Shaojuan Qiu ◽  
Pan Chen ◽  
Zhenye Luo ◽  
...  

Abstract Identification of intrinsic brain activity differences and similarities between major depression (MDD) and bipolar disorder (BD) is necessary. However, results have not yet yielded consistent conclusions. A meta-analysis of whole-brain resting-state functional MRI (rs-fMRI) studies that explored differences in the amplitude of low-frequency fluctuation (ALFF) between patients (including MDD and BD) and healthy controls (HCs) was conducted using seed-based d mapping software. Systematic literature search identified 50 studies comparing 1399 MDD patients and 1332 HCs, and 15 studies comparing 494 BD patients and 593 HCs. MDD patients displayed increased ALFF in the right superior frontal gyrus (SFG) (including the medial orbitofrontal cortex, medial prefrontal cortex [mPFC], anterior cingulate cortex [ACC]), bilateral insula extending into the striatum and left supramarginal gyrus and decreased ALFF in the bilateral cerebellum, bilateral precuneus, and left occipital cortex compared with HCs. BD showed increased ALFF in the bilateral inferior frontal gyrus, bilateral insula extending into the striatum, right SFG, and right superior temporal gyrus (STG) and decreased ALFF in the bilateral precuneus, left cerebellum (extending to the occipital cortex), left ACC, and left STG. In addition, MDD displayed increased ALFF in the left lingual gyrus, left ACC, bilateral precuneus/posterior cingulate gyrus, and left STG and decreased ALFF in the right insula, right mPFC, right fusiform gyrus, and bilateral striatum relative to BD patients. Conjunction analysis showed increased ALFF in the bilateral insula, mPFC, and decreased ALFF in the left cerebellum in both disorders. Our comprehensive meta-analysis suggests that MDD and BD show a common pattern of aberrant regional intrinsic brain activity which predominantly includes the insula, mPFC, and cerebellum, while the limbic system and occipital cortex may be associated with spatially distinct patterns of brain function, which provide useful insights for understanding the underlying pathophysiology of brain dysfunction in affective disorders, and developing more targeted and efficacious treatment and intervention strategies.


2017 ◽  
Vol 47 (7) ◽  
pp. 1292-1299 ◽  
Author(s):  
P. C. Tu ◽  
Y. H. Kuan ◽  
C. T. Li ◽  
T. P. Su

BackgroundPatients with bipolar disorder (BD) frequently exhibit impulsive behaviors independent of their mood state, and trait impulsivity is increasingly recognized as a crucial BD biomarker. This study aimed to investigate structural correlates of trait impulsivity measured using the Barratt Impulsiveness Scale (BIS) in healthy controls (HCs) and patients with BD.MethodWe recruited 59 patients diagnosed with BD I or BD II (35.3 ± 8.5 years) and 56 age- and sex-matched HCs (33.9 ± 7.4 years). Participants underwent structural magnetic resonance imaging and clinical evaluations, and their BIS scores were evaluated. An automated surface-based method (FreeSurfer) was used to measure cortical thickness and generate thickness maps for each participant. Brain-wise regression analysis of the association between cortical thickness and BIS scores was performed separately for BD and HC groups by using a general linear model.ResultsPatients with BD obtained significantly higher BIS scores than HCs. In HCs, higher BIS scores were associated with a thinner cortex in the left inferior, middle and medial frontal cortices. By contrast, in BD patients, higher BIS scores were associated with a thicker cortex in the right insula. Patients with BD showed a thinner cortex than HCs in all these four structures.ConclusionsThe findings indicate that the left prefrontal cortex plays a cardinal role in trait impulsivity of healthy individuals. Patients with BD have a different structural correlate of trait impulsivity in the right insula. However, the use of various psychotropics in patients with BD may limit our interpretation of BD findings.


2009 ◽  
Vol 21 (2) ◽  
pp. 58-66 ◽  
Author(s):  
Racheal Degabriele ◽  
Jim Lagopoulos

Objective:The electroencephalogram (EEG) can be a useful tool in determining differences in general neural activity and specific waveforms in individuals with a number of psychiatric disorders. This paper aims to outline and discuss significant findings in EEG and event-related potential (ERP) research into bipolar disorder (BD).Methods:A literature review was performed through searches of MedLine, EMBASE, CINAHL and PsycInfo medical research databases for papers published from 1985 onwards. References of selected articles were also examined for other relevant studies.Results:Differences in general EEG data were found in subjects with BD, namely increased theta and delta and decreased alpha wave bands. Changes in EEG were also found in euthymic BD subjects and those undergoing medication programmes. ERP studies commonly report prolonged latencies and reduced amplitudes in the P300 component. Hyperfunctioning of the right hemisphere in BD was also reported in some studies, although further confirmation of this finding is required. Finally, the effects of medication and the role that genetics plays in EEG still remain unclear.Conclusions:The literature reviewed demonstrates supporting evidence for the presence of significant differences in EEG and ERP data in subjects with BD. However, methodological considerations such as varying mood states and medication status of the patients need to be followed more stringently for future research to bring about a robust model of the cognitive deficits of BD.


2018 ◽  
Vol 32 (2) ◽  
pp. 88-96
Author(s):  
Susan Jennifer Wenze ◽  
Danielle M. Kats ◽  
Brandon A. Gaudiano

Experiential avoidance (EA) has been linked to various negative psychological outcomes and is believed to play a key role in many forms of psychopathology. While EA has been studied in the context of depression, anxiety, posttraumatic stress disorder, and other diagnoses, this study is the first to investigate the role of EA in bipolar disorder (BD). Eight participants in treatment for BD answered questions about mood state and EA twice per day for 60 days, using an ecological momentary assessment (EMA) design. Within-person hierarchical linear modeling analyses revealed that EA was negatively correlated with mood. Although EA did not predict subsequent mood, the reverse was true; EA increased following reports of blunted positive mood. Clinical implications, study limitations, and future research directions are discussed.


2020 ◽  
Vol 132 (6) ◽  
pp. 2000-2007 ◽  
Author(s):  
Soroush Niketeghad ◽  
Abirami Muralidharan ◽  
Uday Patel ◽  
Jessy D. Dorn ◽  
Laura Bonelli ◽  
...  

Stimulation of primary visual cortices has the potential to restore some degree of vision to blind individuals. Developing safe and reliable visual cortical prostheses requires assessment of the long-term stability, feasibility, and safety of generating stimulation-evoked perceptions.A NeuroPace responsive neurostimulation system was implanted in a blind individual with an 8-year history of bare light perception, and stimulation-evoked phosphenes were evaluated over 19 months (41 test sessions). Electrical stimulation was delivered via two four-contact subdural electrode strips implanted over the right medial occipital cortex. Current and charge thresholds for eliciting visual perception (phosphenes) were measured, as were the shape, size, location, and intensity of the phosphenes. Adverse events were also assessed.Stimulation of all contacts resulted in phosphene perception. Phosphenes appeared completely or partially in the left hemifield. Stimulation of the electrodes below the calcarine sulcus elicited phosphenes in the superior hemifield and vice versa. Changing the stimulation parameters of frequency, pulse width, and burst duration affected current thresholds for eliciting phosphenes, and increasing the amplitude or frequency of stimulation resulted in brighter perceptions. While stimulation thresholds decreased between an average of 5% and 12% after 19 months, spatial mapping of phosphenes remained consistent over time. Although no serious adverse events were observed, the subject experienced mild headaches and dizziness in three instances, symptoms that did not persist for more than a few hours and for which no clinical intervention was required.Using an off-the-shelf neurostimulator, the authors were able to reliably generate phosphenes in different areas of the visual field over 19 months with no serious adverse events, providing preliminary proof of feasibility and safety to proceed with visual epicortical prosthetic clinical trials. Moreover, they systematically explored the relationship between stimulation parameters and phosphene thresholds and discovered the direct relation of perception thresholds based on primary visual cortex (V1) neuronal population excitation thresholds.


Sign in / Sign up

Export Citation Format

Share Document