From membrane to molecule to the third amino acid from the left with a membrane transport protein

1997 ◽  
Vol 30 (4) ◽  
pp. 333-364 ◽  
Author(s):  
H. RONALD KABACK ◽  
JIANHUA WU

The mechanism of energy transduction in biological membranes is a fascinating unsolved problem in biology. It has been recognized for some time that the driving force for a variety of seemingly unrelated phenomena (e.g. secondary active transport, oxidative phosphorylation, rotation of the bacterial flagellar motor) is a bulk-phase, transmembrane electrochemical ion gradient. However, insight into the molecular mechanisms by which free energy stored in such gradients is transduced into work or into chemical energy is just beginning. Nonetheless, gene sequencing and analyses of deduced amino-acid sequences suggest that many biological machines involved in energy transduction, secondary transport proteins in particular (Henderson, 1990; Marger & Saier, 1993), fall into families encompassing proteins from archaea to the mammalian central nervous system, thereby raising the possibility that the members may have common basic structural features and mechanisms. In addition, many of these proteins play important roles in human disease (e.g. diabetes mellitus, glucose/galactose malabsorption, some forms of drug abuse, stroke, antibiotic resistance), as well as the mechanism of action of certain psychotropic drugs.The focus of this review is on recent observations with a specific secondary transport protein, the lactose permease (lac permease) of Escherichia coli, as a representative of a huge number of proteins that catalyse similar reactions in virtually all biological membranes.

1969 ◽  
Vol 22 (5) ◽  
pp. 1197 ◽  
Author(s):  
RL Darskus ◽  
JM Gillespie ◽  
H Lindley

S-Carboxymethyl derivatives of the high-sulphur components of reduced Merino wool have been subdivided by chromatography into 17 fractions, the amino acid compositions of which are reported. Tryptic, chymotryptic, and thermolysin digests of each fraction have been studied by high-voltage paper electrophoresis at pH 3�5 and 6�5. The results suggest that the high-sulphur proteins consist of families of proteins probably containing common structural features. Evidence is presented that the heterogeneity of high-sulphur proteins is not artefactual.


2011 ◽  
Vol 6 (4) ◽  
pp. 545-557 ◽  
Author(s):  
Malay Choudhury ◽  
Takahiro Oku ◽  
Shoji Yamada ◽  
Masaharu Komatsu ◽  
Keita Kudoh ◽  
...  

AbstractApolipoproteins such as apolipoprotein (apo) A-I, apoA-IV, and apoE are lipid binding proteins synthesized mainly in the liver and the intestine and play an important role in the transfer of exogenous or endogenous lipids through the circulatory system. To investigate the mechanism of lipid transport in fish, we have isolated some novel genes of the apoA-I family, apoIA-I (apoA-I isoform) 1–11, from Japanese eel by PCR amplification. Some of the isolated genes of apoIA-I corresponded to 28kDa-1 cDNAs which had already been deposited into the database and encoded an apolipoprotein with molecular weight of 28 kDa in the LDL, whereas others seemed to be novel genes. The structural organization of all apoIA-Is consisted of four exons separated by three introns. ApoIA-I10 had a total length of 3232 bp, whereas other genes except for apoIA-I9 ranged from 1280 to 1441 bp. The sequences of apoIA-Is at the exon-intron junctions were mostly consistent with the consensus sequence (GT/AG) at exon-intron boundaries, whereas the sequences of 3′ splice acceptor in intron 1 of apoIA-I1-7 were (AC) but not (AG). The deduced amino acid sequences of all apoIA-Is contained a putative signal peptide and a propeptide of 17 and 5 amino acid residues, respectively. The mature proteins of apoIA-I1-3, 7, and 8 consisted of 237 amino acids, whereas those of apoIA-I4-6 consisted of 239 amino acids. The mature apoIA-I10 sequence showed 65% identity to amino acid sequence of apoIA-I11 which was associated with an apolipoprotein with molecular weight of 23 kDa in the VLDL. All these mature apoIA-I sequences satisfied the common structural features depicted for the exchangeable apolipoproteins such as apoA-I, apoA-IV, and apoE but apoIA-I11 lacked internal repeats 7, 8, and 9 when compared with other members of apoA-I family. Phylogenetic analysis showed that these novel apoIA-Is isolated from Japanese eel were much closer to apoA-I than apoA-IV and apoE, suggesting new members of the apoA-I family.


2021 ◽  
Vol 77 (5) ◽  
pp. 690-702
Author(s):  
Pandian Ramesh ◽  
Selvarajan Sigamani Sundaresan ◽  
Nagaraj Shobana ◽  
Thangaraj Vinuchakkaravarthy ◽  
Kandasamy Sivakumar ◽  
...  

Crystal structures of hemoglobin (Hb) from two flightless birds, ostrich (Struthio camelus) and turkey (Meleagris gallopova), were determined. The ostrich Hb structure was solved to a resolution of 2.22 Å, whereas two forms of turkey Hb were solved to resolutions of 1.66 Å (turkey monoclinic structure; TMS) and 1.39 Å (turkey orthorhombic structure; TOS). Comparison of the amino-acid sequences of ostrich and turkey Hb with those from other avian species revealed no difference in the number of charged residues, but variations were observed in the numbers of hydrophobic and polar residues. Amino-acid-composition-based computation of various physical parameters, in particular their lower inverse transition temperatures and higher average hydrophobicities, indicated that the structures of ostrich and turkey Hb are likely to be highly ordered when compared with other avian Hbs. From the crystal structure analysis, the liganded state of ostrich Hb was confirmed by the presence of an oxygen molecule between the Fe atom and the proximal histidine residue in all four heme regions. In turkey Hb (both TMS and TOS), a water molecule was bound instead of an oxygen molecule in all four heme regions, thus confirming that they assumed the aqua-met form. Analysis of tertiary- and quaternary-structural features led to the conclusion that ostrich oxy Hb and turkey aqua-met Hb adopt the R-/RH-state conformation.


1997 ◽  
Vol 52 (11-12) ◽  
pp. 789-798 ◽  
Author(s):  
Hans-Jürgen Tiburzy ◽  
Richard J. Berzborn

Abstract Subunit I of chloroplast ATP synthase is reviewed until now to be equivalent to subunit b of Escherichia coli ATP synthase, whereas subunit II is suggested to be an additional subunit in photosynthetic ATP synthases lacking a counterpart in E. coli. After publication of some sequences of subunits II a revision of this assignment is necessary. Based on the analysis of 51 amino acid sequences of b-type subunits concerning similarities in primary structure, iso­electric point and a discovered discontinuous structural feature, our data provide evidence that chloroplast subunit II (subunit b' of photosynthetic eubacteria) and not chloroplast subunit I (subunit b of photosynthetic eubacteria) is the equivalent of subunit b of nonphoto­ synthetic eubacteria, and therefore does have a counterpart in e.g. E. coli. In consequence, structural features essential for function should be looked for on subunit II (b').


Author(s):  
Pietro Bongini ◽  
Simone Gardini ◽  
Monica Bianchini ◽  
Ottavia Spiga ◽  
Neri Niccolai

Understanding the molecular mechanisms that correlate pathologies with missense mutations is of critical importance for disease risk estimations and for devising personalized therapies. Thus, we have performed a bioinformatic survey of ClinVar, a database of human genomic variations, to find signals that can account for missense mutation pathogenicity. Arginine resulted as the most frequently replaced amino acid both in benign and pathogenic mutations. By adding the structural dimension to this investigation to increase its resolution, we found that arginine mutations occurring at the protein–DNA interface increase pathogenicity 6.5 times with respect to benign variants. Glycine is the second amino acid among all the pathological missense mutations. Necessarily replaced by larger amino acids, glycine substitutions perturb the structural stability of proteins and, therefore, their functions, being mostly located in buried protein moieties. Arginine and glycine appear as representative of missense mutations causing respective changes in interaction processes and protein structural features, the two main molecular mechanisms of genome-induced pathologies.


2001 ◽  
Vol 47 (12) ◽  
pp. 1075-1081 ◽  
Author(s):  
Kimitoshi Denda ◽  
Akira Oshima ◽  
Yoshihiro Fukumori

Cytochrome aco3 from a facultatively alkalophilic bacterium, Bacillus YN-2000, was found to be alkaline- and heat-tolerant. To better understand the structural features of Bacillus YN-2000 cytochrome aco3, the gene encoding this enzyme was cloned and sequenced. Nucleotide sequence analyses of the region neighboring the acoI (subunit I) gene revealed that the acoII (subunit II) and acoIII (subunit III) genes were concomitantly clustered upstream and downstream of the acoI gene, respectively, forming an operon with transcriptional polarity. The deduced amino acid sequence of subunit I was highly similar to that of cytochrome caa3 from thermophilic bacterium Bacillus PS3 in which the heme a3 could be replaced with heme o. Furthermore, a marked paucity of basic amino acid residues was found in the cytochrome c-binding subunit II, which might be a result of the adaptation to a highly alkaline external milieu.Key words: cytochrome c oxidase, alkalophile, thermostability, heme o, Bacilli.


1989 ◽  
Vol 260 (1) ◽  
pp. 177-182 ◽  
Author(s):  
T Suzuki ◽  
T Takagi ◽  
S Ohta

The heterodont clam Calyptogena soyoae, living in the cold-seep area of the upper bathyal depth of Sagami Bay, Japan, has two homodimeric haemoglobins (Hb I and Hb II) in erythrocytes. The complete amino acid sequence of 136 residues of C. soyoae Hb II was determined. The sequence showed low homology with any other globins (at most 20% identity) and lacked the N-terminal extension of seven to nine amino acid residues characteristic of all the molluscan haemoglobins sequenced hitherto. Although the subunit assembly of molluscan haemoglobin is known to be ‘back-to-front’ relative to vertebrate haemoglobin, C. soyoae Hb II is unlikely to undergo such a subunit assembly because it lacks homology in the sequence involving subunit interaction. These structural features suggest that C. soyoae haemoglobin may have accomplished a unique molecular evolution. The distal (E7) histidine residue of C. soyoae Hb II is unusually replaced by glutamine. However, the oxyhaemoglobin is stable enough to act as an O2 carrier, since the autoxidation rate at near physiological temperature (3 degrees C) is about 3 times lower than that of human haemoglobin at 37 degrees C. H.p.l.c. patterns of peptides (Figs. 5-7), amino acid compositions of intact protein and peptides (Table 1) and amino acid sequences of intact protein and peptides (Tables 2 and 3) have been deposited as Supplementary Publication SUP 50150 (11 pages) at the British Library Document Supply Centre, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies may be obtained on the terms indicated in Biochem. J. (1989) 257, 5.


1990 ◽  
Vol 259 (4) ◽  
pp. C619-C630 ◽  
Author(s):  
K. Takeyasu ◽  
V. Lemas ◽  
D. M. Fambrough

Encoding DNA for alpha 2- and alpha 3-isoforms of the alpha-subunit of the chicken Na(+)-K(+)-ATPase have been cloned, and their nucleotide sequences and deduced amino acid sequences are reported. Comparisons between these data and comparable data for the rat alpha-subunit isoforms make possible an assessment of alpha-subunit isoform diversity among vertebrates. There is approximately twice as much amino acid sequence difference between alpha-isoforms within a single species as there is difference between corresponding alpha-isoforms of bird and mammal. These data are consistent with triplication of the alpha-subunit gene and evolution of substantially different alpha-subunit isoforms before the separation of avian and mammalian lineages over 200 million years ago and then retention of the majority of these structural differences through subsequent evolution. The implications of this conversation of isoform-specific structural features are discussed in terms of transport functions and bioregulation of the Na(+)-K(+)-ATPase.


2019 ◽  
Vol 20 (5) ◽  
pp. 1037
Author(s):  
Zhaobin Fan ◽  
Houfeng Zhang ◽  
Min Rong ◽  
Dongmei Meng ◽  
Zhenxing Yu ◽  
...  

In the present study, we cloned, sequenced, and explored the structural and functional characteristics of the major histocompatibility complex (MHC)-DQA gene from mink (Neovison vison) for the first time. The full-length sequence of DQA gene was 1147-bp-long, contained a coding region of 768-bp, which was predicted to encoding 255 amino acid residues. The comparison between DQA from mink (Neovison vison) and other MHC-DQA molecules from different animal species showed that nucleotide and encoded amino acid sequences of the mink DQA gene exhibited high similarity with the ferret (Mustela pulourius furo). Phylogenetic analysis revealed that mink (Neovison vison) DQA is grouped with that of ferret (Mustela pulourius furo). The cloned sequence contained a 23-amino acid NH2-terminal signal sequence with the signal peptide cutting site located in amino acids 23–24, and had three Asn-Xaa-Ser/Thr sequons. Three cysteine residues were also identified (Cys-85, Cys-121, and Cys-138). The 218 to 240 amino acids were predicted to be the transmembrane domains. The prediction of the secondary structure revealed three α-helixes and fourteen β-sheets in Neovison vison DQA protein, while random coil was a major pattern. In this study, the whole CDS sequence of Neovison vison DQA gene was successfully cloned, which was valuable for exploring the function and antiviral molecular mechanisms underlying the molecule. The findings of the present study have laid the foundation for the disease resistance and breeding of mink.


Sign in / Sign up

Export Citation Format

Share Document