scholarly journals Changes of 14C Concentration in Modern Trees from Upper Silesia Region, Poland

Radiocarbon ◽  
2001 ◽  
Vol 43 (2B) ◽  
pp. 679-689 ◽  
Author(s):  
Andrzej Z Rakowski ◽  
Sławomira Pawełczyk ◽  
Anna Pazdur

Radiocarbon concentration measurements in tree rings from Upper Silesia indicate significantly lower 14C concentration as compared to the concentrations occurring in “clean air” areas. This phenomenon is known as the Suess effect and is caused by contamination with inactive carbon that originates from fossil fuels combustion. This effect is observed in large urban and industrial areas. Samples for the measurements presented in the paper were collected in some of the largest cities in Upper Silesia: Gliwice, Ruda Śląska, and Chorzów. The samples were annual tree rings (Populus nigra, Pinus silvestris) covering years 1965–1992 and the atmospheric CO2 collected weekly between December 1994 and December 1995.

Radiocarbon ◽  
1986 ◽  
Vol 28 (2A) ◽  
pp. 655-660 ◽  
Author(s):  
Romuald Awsiuk ◽  
Mieczysław F Pazdur

The study of a regional Suess effect is based on three sets of samples of atmospheric CO2: 1) a series of samples collected at the same site in Gliwice from 1980 to 1984, 2) samples collected simultaneously at different sites within the limits of an urban and industrial region of Upper Silesia, and 3) samples collected simultaneously outside this region along an eastern direction. Results of 14C concentration measurements show systematic decrease of Δ14C with the rate close to the corresponding value for clean air. Depletion of 14C concentration was found to be virtually the same in the whole urban area. Analysis of regional synoptic data reveals correlation of individual Δ14C values with wind direction, frequency of calm, and vertical stability of the atmosphere.


Radiocarbon ◽  
2019 ◽  
Vol 61 (6) ◽  
pp. 1775-1784
Author(s):  
Helene Svarva ◽  
Pieter Grootes ◽  
Martin Seiler ◽  
Terje Thun ◽  
Einar Værnes ◽  
...  

ABSTRACTTo resolve an inconsistency around AD 1895 between radiocarbon (14C) measurements on oak from the British Isles and Douglas fir and Sitka spruce from the Pacific Northwest, USA, we measured the 14C content in single-year tree rings from a Scots pine tree (Pinus sylvestris L.), which grew in a remote location in Saltdal, northern Norway. The dataset covers the period AD 1864–1937 and its results are in agreement with measurements from the US Pacific coast around 1895. The most likely explanation for older ages in British oak in this period seems to be 14C depletion associated with the combustion of fossil fuels.


Radiocarbon ◽  
2010 ◽  
Vol 52 (2) ◽  
pp. 823-834 ◽  
Author(s):  
I Svetlik ◽  
P P Povinec ◽  
M Molnár ◽  
M Vána ◽  
A Šivo ◽  
...  

Regional levels of radiocarbon have been monitored in order to investigate the impact of fossil fuel combustion on the activity of atmospheric 14CO2 in central Europe. Data from atmospheric 14CO2 monitoring stations in the Czech Republic, Slovakia, and Hungary for the period 2000–2008 are presented and discussed. The Prague and Bratislava monitoring stations showed a distinct local Suess effect when compared to the Jungfraujoch clean-air monitoring station. However, during the summer period, statistically insignificant differences were observed between the low-altitude stations and the high-mountain Jungfraujoch station. 14C data from the Hungarian monitoring locality at Dunaföldvár and the Czech monitoring station at Košetice, which are not strongly affected by local fossil CO2 sources, indicate similar grouping and amplitudes, typical for a regional Suess effect.


2021 ◽  
Author(s):  
◽  
India Ansell

<p>This study demonstrates the utility of tree ring radiocarbon analysis to quantify a temporal record of recently-added fossil fuel-derived carbon dioxide (CO₂ff) in the urban atmosphere, to retrospectively measure emissions and potentially validate local emissions inventories. Currently, there is no internationally recognised method to test emissions inventories against direct atmospheric estimations of CO₂ff. With the increasing interest in emissions control legislation, independent and objective research to validate emissions reported by governments and industries is needed.  As CO₂ff emissions are completely depleted in radiocarbon (¹⁴C), an observed decrease in the ¹⁴C content of the atmosphere is mostly due to additions of CO₂ff. As trees incorporate CO₂ from the local atmosphere into annual growth rings, it was hypothesised that an urban located tree would reflect emission rates of its local surroundings. Measurements of the ¹⁴C content of cellulose were made from the annual tree rings of a Kauri tree (Agathis australis), located in the downtown area of the Wellington suburb of Lower Hutt (KNG52). This record was compared with tree rings from two Kauri at a nearby coastal site (NIK19 and NIK23) and the long-term clean air ¹⁴CO₂ record from Baring Head. The clean air Kauri trees, NIK19 and NIK23, demonstrated excellent agreement with the Baring Head atmospheric record, indicating that the trees were accurately sampling the atmosphere. The KNG52 tree, demonstrated good agreement with the clean air record in the early part of the record (with some variability), however, exhibited significantly lower Δ¹⁴CO₂ values from the 1980s onward. Calculation of the influence of the terrestrial biosphere on the ¹⁴CO₂ record showed very little impact, determining that the variability seen was due to local additions of CO₂ff.  Historic CO₂ff emissions were calculated using the Δ¹⁴CO₂ measurements from the KNG52 ¹⁴CO₂ record for the period 1972 – 2012. Biosphere correction calculations showed that the biosphere was the dominant influence on the record in the early part of the record (1972 – 1980), with fossil fuel emissions dominating the record from 1980s onward. The observations were compared qualitatively with meteorological data and urban development in the area to assess variability in CO₂ff. A minor trend towards lower wind speeds associated with higher levels of CO₂ff was identified, indicating that local meteorology may be responsible for 10% change seen in the record. The influence of local development demonstrated some possible relation but a correlation was not significant. The KNG52 CO₂ff record was compared with national-level reported liquid (road traffic) emissions from the Carbon Dioxide Information Analysis Centre (CDIAC). The observed KNG52 CO₂ff in the tree ring record appeared to increase in tandem with road traffic emissions.</p>


2021 ◽  
Author(s):  
◽  
Margaret Norris

<p>This project aims to reconstruct historic fossil fuel derived CO₂ (CO₂ff) emissions from two closely located point sources in Taranaki, New Zealand. The Vector gas processing plant and the Ballance agri-nutrients ammonia urea plant have combined emissions of ~0.16 TgC yr⁻¹ since 1970 and 1982 respectively. Previous work found 2–5 ppm CO₂ff in short term integrated samples collected 600m downwind of the Vector plant. This study extends the dataset back 30 years using radiocarbon measurements in tree rings.  Trees incorporate CO₂ from the local atmosphere into their annual growth rings. Measurements of ¹⁴C in polluted and clean air trees were compared to the Baring Head Δ¹⁴CO₂ atmospheric record. As CO₂ff emissions are devoid of ¹⁴C addition of CO₂ff will cause a decrease in ¹⁴C directly related to the amount of CO₂ff present.  Trees growing immediately downwind of the Vector plant and from clean air locations in Taranaki and Baring Head Wellington, were cored and cut into one year growth increments. Two cellulose preparation methods were tested to confirm effectiveness at removing mobile extractive components and lignin. Radiocarbon and stable isotope results showed that the ANSTO method was more effective than the Rafter method. The clean air trees compare well with the Baring Head atmospheric record whereas trees growing downwind of the Vector plant demonstrate lower ¹⁴C content consistent with CO₂ff addition. Historic CO₂ff emissions were reconstructed for the polluted trees, with 1–3ppm of CO₂ff in the Luscombe chestnut tree and 4–7 ppm CO₂ff in the Vector pine tree. CO₂ff observations were compared with reported emissions from the Vector and Ballance plants. Observed CO₂ff increased by 10% in the Vector pine tree for the period 1994–2012 relative to pre-1994 levels, whereas combined CO₂ff emissions increased by 64%. No increase was observed in the Luscombe chestnut tree for the same time period. Meteorological analysis was performed to assess the relative contribution of CO₂ff from the sources to the trees. It is proposed that the trend observed in the Vector pine is due to the dominance of emissions from the Ballance plant and a relatively minor contribution from the Vector plant.</p>


Radiocarbon ◽  
2004 ◽  
Vol 46 (2) ◽  
pp. 701-719 ◽  
Author(s):  
Sławomira Pawełczyk ◽  
Anna Pazdur

Carbon isotopes are widely used as indicators in the study of atmospheric CO2 variability in space and time. Preliminary results are part of a project investigating 13C and 14C concentration changes during the last 150 yr in Poland, both in industrial and ecologically clean regions, using annual tree rings (Pinus sylvestris, Populus nigra). The results describe the local Suess effect recorded in the industrial Kraków and Upper Silesia regions compared to changes of background radiocarbon concentration caused by global human activity in a “clean region,” Augustów Wilderness. The δ13C record also shows the influence of the local Suess effect.


Radiocarbon ◽  
2021 ◽  
pp. 1-23
Author(s):  
Quan Hua ◽  
Jocelyn C Turnbull ◽  
Guaciara M Santos ◽  
Andrzej Z Rakowski ◽  
Santiago Ancapichún ◽  
...  

ABSTRACT This paper presents a compilation of atmospheric radiocarbon for the period 1950–2019, derived from atmospheric CO2 sampling and tree rings from clean-air sites. Following the approach taken by Hua et al. (2013), our revised and extended compilation consists of zonal, hemispheric and global radiocarbon (14C) data sets, with monthly data sets for 5 zones (Northern Hemisphere zones 1, 2, and 3, and Southern Hemisphere zones 3 and 1–2). Our new compilation includes smooth curves for zonal data sets that are more suitable for dating applications than the previous approach based on simple averaging. Our new radiocarbon dataset is intended to help facilitate the use of atmospheric bomb 14C in carbon cycle studies and to accommodate increasing demand for accurate dating of recent (post-1950) terrestrial samples.


2017 ◽  
Vol 24 (1) ◽  
pp. 19-29 ◽  
Author(s):  
Grzegorz Kosior ◽  
Agnieszka Dołhańczuk-Śródka ◽  
Zbigniew Ziembik

Abstract Mosses are good bioaccumulators of radionuclides and from the 60 of the last century, they are used as bioindicators of radioactive contamination in the environment. Concentration of impurities in moss represent the accumulation in mosses during the past 2-3 years. As a result, the moss composition analysis provides information on an average contamination within a few vegetation seasons. During our survey the measurements of radionuclide activity concentrations in P. schreberi transplanted from places relatively clean to heavily contaminated areas of Upper Silesia were carried out. An increase in the radionuclides activity concentrations in P. schreberi transplants may indicate not only deposition of the radionuclides itself, but also an influx of other pollutants. The results showed no relationship between the Pb-210 activity concentration and activity concentrations of Pb-214, Bi-214, also belonging to the uranium-radium decay series. The increased concentration of Pb-210 in P. schreberi may be the result of the radionuclide atmospheric deposition, which appears in the environment as a result of fossil fuels burning. Excess, allogeneic Pb-210 can be used as marker of environmental pollution. In the areas with its higher activity concentration increased pollution can be expected delivered, for example, by local industry. The Project received financial assistance from the funds of the National Science Centre, granted by force of the decision no. UMO-2013/09/B/NZ8/03340 (NCN).


Radiocarbon ◽  
2019 ◽  
Vol 62 (1) ◽  
pp. 141-156
Author(s):  
Natalia Piotrowska ◽  
Anna Pazdur ◽  
Sławomira Pawełczyk ◽  
Andrzej Z Rakowski ◽  
Barbara Sensuła ◽  
...  

ABSTRACTIn this paper, a record of the 14C and 13C isotope content of atmospheric CO2 for Gliwice is presented for samples collected on a weekly basis in the years 2011–2013. In addition, measurements were performed on the early and late wood from the annual rings of pine trees from five sites located 3–6 km from the atmospheric CO2 sampling point. The concentration of 14C in CO2 samples from the air was much lower relative to the concentration of this isotope in “clean air,” indicating a pronounce Suess effect, with a mean Δ14C lower by ca. 60‰ than Jungfraujoch data when the 15% of the highest differences are excluded, which leads to the FFCO2 estimate of 5.8%. In winter, the main source of fossil CO2 was fuel combustion, as confirmed by significant correlations with air pollutants. In the vegetation seasons, the Δ14C was highly variable due to biogenic influence and more variable winds. The isotopic results were also affected by an additional significant CO2 source for the Gliwice air, which was a closed mine shaft. The Δ14C and δ13C in tree rings did not record a strong Suess effect in the years 2008–2013 in woodland areas around Gliwice city.


Sign in / Sign up

Export Citation Format

Share Document