A Population Level Temperature-Dependent Model of Seedling Johnsongrass (Sorghum halepense) Flowering

Weed Science ◽  
1989 ◽  
Vol 37 (3) ◽  
pp. 471-477 ◽  
Author(s):  
David C. Bridges ◽  
James M. Chandler

A population level, two-compartment, temperaturedependent model that predicts date of seedling johnsongrass flowering was formulated. The model consisted of a fourparameter poikilotherm rate equation to describe development rate as a function of temperature and a temperature-independent Weibull function to distribute flowering times for the population. Experiments were conducted to determine the effect of temperature, nitrogen availability, and water availability on development of seedling johnsongrass. Development was most sensitive to temperature while the effect of nitrogen concentration and water availability was minimum and inconsistent. The model was tested against three independent field data sets and provided accurate prediction of flowering dates for each data set.

Weed Science ◽  
1996 ◽  
Vol 44 (2) ◽  
pp. 266-272 ◽  
Author(s):  
David L. Holshouser ◽  
James M. Chandler

Research was conducted to formulate a temperature-dependent population-level model for rhizome johnsongrass flowering. A nonlinear poikilotherm rate equation was used to describe development as a function of temperature and a temperature-independent Weibull function was used to distribute development times for the population. Johnsongrass flowering data were collected under constant temperature conditions to parameterize the poikilotherm rate equation and Weibull function. Coupling the poikilotherm rate equation with the Weibull function resulted in a population level temperature-dependent model. The model was validated against independent field data sets. The model accurately predicted rhizome johnsongrass flowering from plants emerging in the spring. The model performed poorly for plants emerging in summer. Adjustments to the high-temperature inhibition parameter of the poikilotherm rate equation improved model performance in the summer without affecting spring predictions.


Weed Science ◽  
1996 ◽  
Vol 44 (2) ◽  
pp. 257-265 ◽  
Author(s):  
David L. Holshouser ◽  
James M. Chandler ◽  
Hsin-I Wu

Research was conducted to formulate a temperature-dependent population level model for johnsongrass seed germination and rhizome bud break. A nonlinear poikilotherm rate equation was used to describe development rate as a function of temperature, and a temperature-independent Weibull function was used to distribute development times for the population. Seed germination and initiation of rhizome bud break of johnsongrass were collected under constant temperature conditions to parameterize the model. Seed germination rate increased with temperature up to 36 C, then declined at 40 C. Rate of rhizome bud break increased with temperature up to 32 C, then rapidly decreased with further temperature increases. Rate of rhizome bud break was higher than for seed germination at temperatures of 32 C or below, but lower at higher temperatures. Time to first germination or bud break event was longer for seed than for rhizomes, but subsequent progression of development was higher for seed. A population level temperature-dependent model was developed by coupling the poikilotherm equation with the Weibull function. The model was validated against two independent seed germination and three independent rhizome bud germination data sets.


Author(s):  
Muhammad Shoaib ◽  
Saif Ur Rehman ◽  
Imran Siddiqui ◽  
Shafiqur Rehman ◽  
Shamim Khan ◽  
...  

In order to have a reliable estimate of wind energy potential of a site, high frequency wind speed and direction data recorded for an extended period of time is required. Weibull distribution function is commonly used to approximate the recorded data distribution for estimation of wind energy. In the present study a comparison of Weibull function and Gaussian mixture model (GMM) as theoretical functions are used. The data set used for the study consists of hourly wind speeds and wind directions of 54 years duration recorded at Ijmuiden wind site located in north of Holland. The entire hourly data set of 54 years is reduced to 12 sets of hourly averaged data corresponding to 12 months. Authenticity of data is assessed by computing descriptive statistics on the entire data set without average and on monthly 12 data sets. Additionally, descriptive statistics show that wind speeds are positively skewed and most of the wind data points are observed to be blowing in south-west direction. Cumulative distribution and probability density function for all data sets are determined for both Weibull function and GMM. Wind power densities on monthly as well as for the entire set are determined from both models using probability density functions of Weibull function and GMM. In order to assess the goodness-of-fit of the fitted Weibull function and GMM, coefficient of determination (R2) and Kolmogorov-Smirnov (K-S) tests are also determined. Although R2 test values for Weibull function are much closer to ‘1’ compared to its values for GMM. Nevertheless, overall performance of GMM is superior to Weibull function in terms of estimated wind power densities using GMM which are in good agreement with the power densities estimated using wind data for the same duration. It is reported that wind power densities for the entire wind data set are 307 W/m2 and 403.96 W/m2 estimated using GMM and Weibull function, respectively.


2021 ◽  
Vol 18 (11) ◽  
pp. 3285-3308
Author(s):  
Irene E. Teubner ◽  
Matthias Forkel ◽  
Benjamin Wild ◽  
Leander Mösinger ◽  
Wouter Dorigo

Abstract. Vegetation optical depth (VOD) from microwave satellite observations has received much attention in global vegetation studies in recent years due to its relationship to vegetation water content and biomass. We recently have shown that VOD is related to plant productivity, i.e., gross primary production (GPP). Based on this relationship between VOD and GPP, we developed a theory-based machine learning model to estimate global patterns of GPP from passive microwave VOD retrievals. The VOD-GPP model generally showed good agreement with site observations and other global data sets in temporal dynamic but tended to overestimate annual GPP across all latitudes. We hypothesized that the reason for the overestimation is the missing effect of temperature on autotrophic respiration in the theory-based machine learning model. Here we aim to further assess and enhance the robustness of the VOD-GPP model by including the effect of temperature on autotrophic respiration within the machine learning approach and by assessing the interannual variability of the model results with respect to water availability. We used X-band VOD from the VOD Climate Archive (VODCA) data set for estimating GPP and used global state-of-the-art GPP data sets from FLUXCOM and MODIS to assess residuals of the VOD-GPP model with respect to drought conditions as quantified by the Standardized Precipitation and Evaporation Index (SPEI). Our results reveal an improvement in model performance for correlation when including the temperature dependency of autotrophic respiration (average correlation increase of 0.18). This improvement in temporal dynamic is larger for temperate and cold regions than for the tropics. For unbiased root-mean-square error (ubRMSE) and bias, the results are regionally diverse and are compensated in the global average. Improvements are observed in temperate and cold regions, while decreases in performance are obtained mainly in the tropics. The overall improvement when adding temperature was less than expected and thus may only partly explain previously observed differences between the global GPP data sets. On interannual timescales, estimates of the VOD-GPP model agree well with GPP from FLUXCOM and MODIS. We further find that the residuals between VOD-based GPP estimates and the other data sets do not significantly correlate with SPEI, which demonstrates that the VOD-GPP model can capture responses of GPP to water availability even without including additional information on precipitation, soil moisture or evapotranspiration. Exceptions from this rule were found in some regions: significant negative correlations between VOD-GPP residuals and SPEI were observed in the US corn belt, Argentina, eastern Europe, Russia and China, while significant positive correlations were obtained in South America, Africa and Australia. In these regions, the significant correlations may indicate different plant strategies for dealing with variations in water availability. Overall, our findings support the robustness of global microwave-derived estimates of gross primary production for large-scale studies on climate–vegetation interactions.


2020 ◽  
Vol 11 (1) ◽  
pp. 10-16
Author(s):  
Muhammad Shoaib ◽  
Saif Ur Rehman ◽  
Imran Siddiqui ◽  
Shafiqur Rehman ◽  
Shamim Khan ◽  
...  

In order to have a reliable estimate of wind energy potential of a site, high frequency wind speed and direction data recorded for an extended period of time is required. Weibull distribution function is commonly used to approximate the recorded data distribution for estimation of wind energy. In the present study a comparison of Weibull function and Gaussian mixture model (GMM) as theoretical functions are used. The data set used for the study consists of hourly wind speeds and wind directions of 54 years duration recorded at Ijmuiden wind site located in north of Holland. The entire hourly data set of 54 years is reduced to 12 sets of hourly averaged data corresponding to 12 months. Authenticity of data is assessed by computing descriptive statistics on the entire data set without average and on monthly 12 data sets. Additionally, descriptive statistics show that wind speeds are positively skewed and most of the wind data points are observed to be blowing in south-west direction. Cumulative distribution and probability density function for all data sets are determined for both Weibull function and GMM. Wind power densities on monthly as well as for the entire set are determined from both models using probability density functions of Weibull function and GMM. In order to assess the goodness-of-fit of the fitted Weibull function and GMM, coefficient of determination (R2) and Kolmogorov-Smirnov (K-S) tests are also determined. Although R2 test values for Weibull function are much closer to ‘1’ compared to its values for GMM. Nevertheless, overall performance of GMM is superior to Weibull function in terms of estimated wind power densities using GMM which are in good agreement with the power densities estimated using wind data for the same duration. It is reported that wind power densities for the entire wind data set are 307 W/m2 and 403.96 W/m2 estimated using GMM and Weibull function, respectively.


2020 ◽  
Author(s):  
Irene E. Teubner ◽  
Matthias Forkel ◽  
Benjamin Wild ◽  
Leander Mösinger ◽  
Wouter A. Dorigo

Abstract. Vegetation optical depth (VOD) from microwave satellite observations has received much attention in global vegetation studies in recent years due to its relationship to vegetation water content and biomass. We recently have shown that VOD is related to plant productivity, i.e. gross primary production (GPP). Based on this relationship between VOD and GPP we developed a theory-based machine learning model to estimate global patterns of GPP from passive microwave VOD retrievals. The VOD-GPP model generally showed good agreement with site observations and other global data sets in temporal dynamic but tended to overestimate annual GPP across all latitudes. We hypothesized that the reason for the overestimation is the missing effect of temperature on autotrophic respiration in the theory-based machine learning model. Here we aim to further assess and enhance the robustness of the VOD-GPP model by including the effect of temperature on autotrophic respiration within the machine learning approach and by assessing the interannual variability of the model results with respect to water availability. We used X-band VOD from the VOD Climate Archive (VODCA) data set for estimating GPP and used global state-of-the art GPP data sets from FLUXCOM and MODIS to assess residuals of the VOD-GPP model with respect to drought conditions as quantified by the Standardized Precipitation and Evaporation Index (SPEI). Our results reveal an improvement in model performance for correlation when including the temperature dependency of autotrophic respiration. This increase in temporal dynamic is largest for regions outside the tropics. For error and bias, the results are regionally diverse and are compensated in the global average. On interannual time scales, estimates of the VOD-GPP model agree well with GPP from FLUXCOM and MODIS. We further find that the residuals between VOD-based GPP estimates and the other data sets do not significantly correlate with SPEI which demonstrates that the VOD-GPP model can capture responses of GPP to water availability even without including additional information on precipitation, soil moisture or evapotranspiration. However, some regions reveal significant correlations between VOD-GPP residuals with SPEI, which may indicate different plant strategies for dealing with variations in water availability. Overall, our findings support the robustness of global microwave-derived estimates of gross primary production for large-scale studies on climate-vegetation interactions.


2018 ◽  
Vol 154 (2) ◽  
pp. 149-155
Author(s):  
Michael Archer

1. Yearly records of worker Vespula germanica (Fabricius) taken in suction traps at Silwood Park (28 years) and at Rothamsted Research (39 years) are examined. 2. Using the autocorrelation function (ACF), a significant negative 1-year lag followed by a lesser non-significant positive 2-year lag was found in all, or parts of, each data set, indicating an underlying population dynamic of a 2-year cycle with a damped waveform. 3. The minimum number of years before the 2-year cycle with damped waveform was shown varied between 17 and 26, or was not found in some data sets. 4. Ecological factors delaying or preventing the occurrence of the 2-year cycle are considered.


2018 ◽  
Vol 21 (2) ◽  
pp. 117-124 ◽  
Author(s):  
Bakhtyar Sepehri ◽  
Nematollah Omidikia ◽  
Mohsen Kompany-Zareh ◽  
Raouf Ghavami

Aims & Scope: In this research, 8 variable selection approaches were used to investigate the effect of variable selection on the predictive power and stability of CoMFA models. Materials & Methods: Three data sets including 36 EPAC antagonists, 79 CD38 inhibitors and 57 ATAD2 bromodomain inhibitors were modelled by CoMFA. First of all, for all three data sets, CoMFA models with all CoMFA descriptors were created then by applying each variable selection method a new CoMFA model was developed so for each data set, 9 CoMFA models were built. Obtained results show noisy and uninformative variables affect CoMFA results. Based on created models, applying 5 variable selection approaches including FFD, SRD-FFD, IVE-PLS, SRD-UVEPLS and SPA-jackknife increases the predictive power and stability of CoMFA models significantly. Result & Conclusion: Among them, SPA-jackknife removes most of the variables while FFD retains most of them. FFD and IVE-PLS are time consuming process while SRD-FFD and SRD-UVE-PLS run need to few seconds. Also applying FFD, SRD-FFD, IVE-PLS, SRD-UVE-PLS protect CoMFA countor maps information for both fields.


Author(s):  
Kyungkoo Jun

Background & Objective: This paper proposes a Fourier transform inspired method to classify human activities from time series sensor data. Methods: Our method begins by decomposing 1D input signal into 2D patterns, which is motivated by the Fourier conversion. The decomposition is helped by Long Short-Term Memory (LSTM) which captures the temporal dependency from the signal and then produces encoded sequences. The sequences, once arranged into the 2D array, can represent the fingerprints of the signals. The benefit of such transformation is that we can exploit the recent advances of the deep learning models for the image classification such as Convolutional Neural Network (CNN). Results: The proposed model, as a result, is the combination of LSTM and CNN. We evaluate the model over two data sets. For the first data set, which is more standardized than the other, our model outperforms previous works or at least equal. In the case of the second data set, we devise the schemes to generate training and testing data by changing the parameters of the window size, the sliding size, and the labeling scheme. Conclusion: The evaluation results show that the accuracy is over 95% for some cases. We also analyze the effect of the parameters on the performance.


2019 ◽  
Vol 73 (8) ◽  
pp. 893-901
Author(s):  
Sinead J. Barton ◽  
Bryan M. Hennelly

Cosmic ray artifacts may be present in all photo-electric readout systems. In spectroscopy, they present as random unidirectional sharp spikes that distort spectra and may have an affect on post-processing, possibly affecting the results of multivariate statistical classification. A number of methods have previously been proposed to remove cosmic ray artifacts from spectra but the goal of removing the artifacts while making no other change to the underlying spectrum is challenging. One of the most successful and commonly applied methods for the removal of comic ray artifacts involves the capture of two sequential spectra that are compared in order to identify spikes. The disadvantage of this approach is that at least two recordings are necessary, which may be problematic for dynamically changing spectra, and which can reduce the signal-to-noise (S/N) ratio when compared with a single recording of equivalent duration due to the inclusion of two instances of read noise. In this paper, a cosmic ray artefact removal algorithm is proposed that works in a similar way to the double acquisition method but requires only a single capture, so long as a data set of similar spectra is available. The method employs normalized covariance in order to identify a similar spectrum in the data set, from which a direct comparison reveals the presence of cosmic ray artifacts, which are then replaced with the corresponding values from the matching spectrum. The advantage of the proposed method over the double acquisition method is investigated in the context of the S/N ratio and is applied to various data sets of Raman spectra recorded from biological cells.


Sign in / Sign up

Export Citation Format

Share Document